Homework - MS403

Due Tuesday, November 5, 2013

Remember to write on only one side of the sheet.

1. Let V be a finite dimensional F-vector space. A linear transformation $T: V \rightarrow V$ is called idempotent if $T^{2}=T$. Prove that if T is an idempotent linear transformation then there is a basis B of V such that the matrix of T with respect to B has the following form:

$$
\left(\begin{array}{cc}
I_{n} & 0_{n \times m} \\
0_{m \times n} & 0_{m \times m}
\end{array}\right)
$$

where I_{n} is the $n \times n$ identity matrix and $0_{r \times s}$ denotes the $r \times s$ zero matrix.
2. Let V be a finite dimensional F-vector space. A linear transformation $T: V \rightarrow V$ is called nilpotent if $T^{k}=T$ for some positive integer k.
(a) Prove that if T is a nilpotent linear transformation then there is a vector $v \neq 0$ in V such that $T(v)=0$.
(b) Prove that if W is a T-invariant subspace of V then both $T_{\left.\right|_{W}}$ and the induced linear transformation \bar{T} on V / W are nilpotent.
(c) Prove that if T is a nilpotent linear transformation then there is a basis B of V such that the matrix of T with respect to B is strictly upper triangular (that is, all of the entries on the diagonal or below are zero).
3. Let $A=\left(a_{i, j}\right) \in M_{n}(F)$ where F is a field. Define the trace of A to be $\sum_{i=1}^{n} a_{i, i}$, the sum of the diagonal elements of A. We will denote it $\operatorname{Tr}(A)$.
(a) Prove that the function $\operatorname{Tr}: M_{n}(F) \rightarrow F$ given by sending A to $\operatorname{Tr}(A)$ is a linear transformation.
(b) Prove that for all $A, B \in M_{n}(F), \operatorname{Tr}(A B)=\operatorname{Tr}(B A)$.
(c) Let $S: V \rightarrow V$ be a linear transformation and let B, C be bases of V. Prove that $\operatorname{Tr}\left(m_{B}(S)\right)=\operatorname{Tr}\left(m_{C}(S)\right)$. Give a definition of the trace of a linear transformation.
4. From the book, page 126, problem 2.3
5. From the book, page 126, problem 3.4
6. From the book, page 128, problem 6.4

