Homework - MS403

Due Tuesday, October 29, 2013

Remember to write on only one side of the sheet.

1. Compute $\left|G l_{n}\left(\mathbf{F}_{p}\right)\right|$.
2. Let p be prime and let R_{p} denote the following set of matrices:

$$
R_{p}=\left\{\left.\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right) \right\rvert\, a, b \in \mathbf{F}_{p}\right\}
$$

(a) Prove that R_{p} is a commutative ring.
(b) Prove that R_{3} and R_{7} are fields, but R_{5} is not. Try to determine for which primes p the ring R_{p} is a field.
3. Let V be an F-vector space and let W be a subspace. Prove there is a one-to-one correspondence between the subspaces of V / W and the subspaces of V that contain W.
4. Let V be an n-dimensional vector space over a field F. Let A_{m} denote the set of multilinear alternating functions on $V^{m}=V \times V \times \cdots \times V(m$ times $)$. Note that A_{m} is a vector space over F.
(a) Prove that if $m>n$, then $A_{m}=0$.
(b) Prove that if $m \leq n$, then the dimension of A_{m} is $\binom{n}{m}$.
5. Each of the following is a basis of \mathbf{F}_{7}^{3} over the field \mathbf{F}_{7}.

$$
\begin{aligned}
& B=\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
2 \\
3
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
3
\end{array}\right) \\
& C=\left(\begin{array}{l}
2 \\
2 \\
3
\end{array}\right),\left(\begin{array}{l}
4 \\
0 \\
2
\end{array}\right),\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right)
\end{aligned}
$$

(a) Find the change of basis matrix from B to C, that is, find the matrix P such that $P[v]_{B}=[v]_{C}$ for all $v \in \mathbf{F}_{7}^{3}$.
(b) Let A be the following matrix over \mathbf{F}_{7} :

$$
\left(\begin{array}{ccc}
1 & 0 & -1 \\
2 & -2 & 0 \\
3 & 1 & 1
\end{array}\right)
$$

Find the matrix of L_{A} with respect to the basis B.
(c) Use your answer to (a) to find the matrix of L_{A} with respect to the basis C.

