Homework - MS403

Due Tuesday, October 15, 2013

Remember to write on only one side of the sheet.

1. Let G be a group. Prove that if $G / Z(G)$ is cyclic, then G is abelian.
2. Let m and n be positive integers. Prove that $C_{m} \times C_{n}$ is cyclic if and only if m and n are relatively prime.
3. Let G be a finite group. The exponent of G is the smallest positive integer k such that for all $g \in G, g^{k}=e$. It is denoted $\exp (G)$. Prove the following:
(a) $\exp (G)=l c m\{o(g) \mid g \in G\}$
(b) $\exp (G)$ divides $|G|$.
(c) Compute the exponents of the following groups: C_{6}, S_{4}, Q_{8}.
4. Let G be a finite abelian group. Prove that G is cyclic if and only if $\exp (G)=|G|$.
5. (a) Let V and W be vector spaces over a field F and let $T: V \rightarrow W$ be a linear transformation. Prove that if T is an isomorphism (that is, T is one-to-one and onto), then the inverse function T^{-1} is also a linear transformation.
(b) Now let $A \in M_{n}(F)$ and let $L_{A}: F^{n} \rightarrow F^{n}$ denote the linear transformation given by left multiplication by A. Prove that L_{A} is an isomorphism if and only if the matrix A is invertible.
6. Let V be an F-vector space and let W be a subspace.
(a) Prove that V is finite dimensional if and only if W and V / W are finite dimensional.
(b) Now assume V is finite dimensional and prove that $\operatorname{dim}(W)+\operatorname{dim}(V / W)=\operatorname{dim}(V)$.
7. Let V and U be vector spaces over a field F and let $T: V \rightarrow U$ be a linear transformation.
(a) Prove that $T(V)(=\{T(v) \mid v \in V\})$ is a subspace of W and is finite dimensional if V is finite dimensional.
(b) Prove that if V is finite dimensional then $\operatorname{dim}(\operatorname{ker}(T))+\operatorname{dim}(T(V))=\operatorname{dim}(V)$ (Hint: Problem 6 and the fundamental theorem).
