Homework - S403

Due September 24, 2013

Please write on only one side of the sheet.

1. Let G be a group.

(a) Prove that if G has exactly three subgroups, then G is finite cyclic and |G| is p^2 for some prime p.

(b) Prove that if G has exactly four subgroups, then G is finite cyclic and |G| is either p^3 for some prime p or pq for distinct primes p and q.

2. Let G be a (possibly infinite) group. Let H be a subgroup.

(a) Prove that $\tilde{H} = \bigcap_{g \in G} gHg^{-1}$ is a normal subgroup of G. Then prove that \tilde{H} is the largest normal subgroup of G contained in H, in the sense that if K is any normal subgroup of G contained in H, then $K \subseteq \tilde{H}$.

(b) Now suppose G contains a subgroup of finite index. Prove that G contains a normal subgroup of finite index.

3. Let G be a group and let H be a subgroup. Prove that if H has index two in G, then H is normal.

4. Find all the subgroups of C_{12} , the cyclic group of order 12.

5. In D_4 , let $N = \langle R_2 \rangle$, the subgroup generated by R_2 . We have seen that N is normal. The quotient group D_4/N is a group you know. What is it?

6. Let $f: G_1 \to G_2$ be a group homomorphism and let N denote the kernel of f. In class we showed there is an induced homomorphism from G_1/N to G_2 . Generalize this by showing that if K is a normal subgroup of G_1 such that $K \subseteq N$, then there is an induced homomorphism from G_1/K to G_2 .