Homework - S403

Due September 10, 2013
Please write on only one side of the sheet.
Note: \mathbf{Z} denotes the set of integers and \mathbf{R} denotes the set of real numbers

1. (a) Let S, T be sets and let $f: S \rightarrow T$ be a function. Define a relation \sim on S by $s_{1} \sim s_{2}$ if $f\left(s_{1}\right)=f\left(s_{2}\right)$. Prove that \sim is an equivalence relation.
(b) Let $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ be given by $f(x, y)=x^{2}-y^{2}$. Draw the equivalence classes for the equivalence relation determined (as in part (a)) by f.
2. Determine all subgroups of D_{4}.
3. Let $m, n \in \mathbf{Z}$. We have proved there is a unique positive integer l such that $m \mathbf{Z} \cap n \mathbf{Z}=$ $l \mathbf{Z}$. Prove that l is the least common multiple of m and n.
4. Let H and K be subgroups of a group G. Prove that $H \cup K$ is a subgroup of G if and only if $H \subseteq K$ or $K \subseteq H$.
5. Let S be a set and let $f: S \rightarrow S$ be a one-to-one, onto function. Then f has an inverse and If k is an integer it makes sense to talk about f^{k} (So $f^{2}(s)=f(f(s))$ and $f^{-2}(s)=f^{-1}\left(f^{-1}(s)\right)$ and so on). Define a relation on S by $s_{1} \sim s_{2}$ if there is an integer k such that $f^{k}\left(s_{1}\right)=s_{2}$. Show this is an equivalence relation. The equivalence classes for this relation are called the orbits of the function f.
6. (a) Let H be a subgroup of a group G. Define a relation \sim on G by $g_{1} \sim g_{2}$ if $g_{1} g_{2}^{-1} \in H$. Prove that this is an equivalence relation and that the equivalence classes are precisely the "right" cosets $H g$ for $g \in G$.
(b) Give an example of a subgroup H of a group G in which there are elements $g_{1}, g_{2} \in G$ such that $g_{1} H=g_{2} H$, but $H g_{1} \neq H g_{2}$.
(c) Let H be a subgroup of a group G and let $g_{1}, g_{2} \in G$. Prove that $g_{1} H=g_{2} H$ if and only if $H g_{1}^{-1}=H g_{2}^{-1}$.
7. Let G be a group in which for all $g \in G, g^{2}=e$. Prove G is abelian.
