Homework - MS403

Due Thursday, November 14, 2013

Remember to write on only one side of the sheet.

1. Let $C \in M_{n}(F)$ and suppose $v^{t} C w=v^{t} w$ for all $v, w \in F^{n}$. Prove that $C=I_{n}$.
2. For any field F we can define the orthogonal group $O_{n}(F)$ as follows: $O_{n}(F)=\{A \in$ $\left.M_{n}(F) \mid A^{t} A=I_{n}\right\}$. It easy to see that this is a group, a subgroup of $G L_{n}(F)$.
(a) Prove that $O_{2}(F)=\left\{\left.\left(\begin{array}{cc}a & b \\ \pm b & \mp a\end{array}\right) \right\rvert\, a, b \in F\right.$ and $\left.a^{2}+b^{2}=1\right\}$.
(b) Find $\left|O_{2}\left(\mathbf{F}_{7}\right)\right|$ and $\left|O_{2}\left(\mathbf{F}_{11}\right)\right|$. Identify the group $O_{2}\left(\mathbf{F}_{7}\right)$.
3. Determine whether the following matrix over \mathbf{F}_{11} can be diagonalized:

$$
\left(\begin{array}{ccc}
5 & 5 & -1 \\
-2 & 4 & -5 \\
2 & -3 & 6
\end{array}\right)
$$

4. (a) Let A be an $m \times m$ matrix over F and let B be an $n \times n$ matrix over F. Show that if C is any $m \times n$ matrix over F then the following holds:

$$
\operatorname{det}\left(\begin{array}{cc}
A & C \\
0_{n \times m} & B
\end{array}\right)=\operatorname{det}(A) \operatorname{det}(B)
$$

(b) Let V be an F-vector space and let $T: V \rightarrow V$ be a linear transformation. Let W be a T-invariant subspace. Let $\bar{T}: V / W \rightarrow V / W$ be the induced linear transformation. Prove that $c h_{T_{\mid W}}(x) c h_{\bar{T}}(x)=c h_{T}(x)$.
5. Prove that if B and C are orthonormal bases for \mathbf{R}^{n}, then the change of basis matrix from B to C is orthogonal.
6. Let W be a subspace of \mathbf{R}^{n} and let $w_{1}, w_{2}, \ldots, w_{k}$ be a basis for W. Define vectors $\tilde{w}_{1}, \tilde{w}_{2}, \ldots \tilde{w}_{k}$ as follows:

$$
\begin{gathered}
\tilde{w}_{1}=w_{1} \\
\text { and for } 0<i<k, \\
\tilde{w}_{i+1}=w_{i+1}-\sum_{j=1}^{i} \frac{\left(w_{i+1}, \tilde{w}_{j}\right)}{\left(\tilde{w}_{j}, \tilde{w}_{j}\right)} \tilde{w}_{j}
\end{gathered}
$$

Prove that $\tilde{w}_{1}, \tilde{w}_{2}, \ldots \tilde{w}_{k}$ is an orthogonal basis for W.
7. (a) Prove that if n is an integer, $n \geq 3$, then D_{n}, the dihedral group of order $2 n$, is isomorphic to a subgroup of $O_{2}(\mathbf{R})$.
(b) Prove that $O_{2}(\mathbf{R})$ is the group of symmetries of the unit circle, that is the group of all one-to-one and onto functions from the unit circle to itself that preserve distance.

