M343 Differential Equations Summary, Summer, 2013, Enrique Areyan General Form of an nth Order Differential Equation:

$$
a_{n}\left(t, y^{\prime}, \cdots, y^{(n-1)}\right) y^{(n)}+a_{n-1}\left(t, y^{\prime}, \cdots, y^{(n-2)}\right) y^{(n-1)}+\cdots a_{1}(t) y^{\prime}+a_{0} y=g(t)
$$

Classification:

Order: the order of a differential equation is the highest derivative in the equation.
Linear.: A differential equation is linear if the coefficients on each derivative of y term is a function of only the independent variable, say t, i.e.:

$$
a_{n}(t) y^{(n)}+a_{n-1}(t) y^{(n-1)}+\cdots a_{1}(t) y^{\prime}+a_{0} y=g(t) \rightarrow \text { General } n \text {th order linear O.D.E }
$$

Solutions: Explicit \rightarrow Written as a function of the independent variable: $y(t)$. Implicit \rightarrow Written as a function of both y and t.
I.V.P: O.D.E comes with initial conditions, $y\left(t_{0}\right)=y_{0}$, if it is a 1 st O.D.E and $y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}$ for 2nd Order

First Order Differential Equations:

General Form: $y^{\prime}=f(t, y)$. To apply methods and theorems use $y^{\prime \prime}+p(t) y^{\prime}=g(t)$.
Existence and Uniqueness, linear 1st O.D.E: Consider the I.V.P: $y^{\prime}+p(t) y=g(t), \quad y\left(t_{0}\right)=y_{0}$.

Existence and Uniqueness, 1st O.D.E: Consider the I.V.P: $y^{\prime}=f(t, y), \quad y\left(t_{0}\right)=y_{0}$.
IF f and $\frac{\partial f}{\partial y}$ are continuos on $(\alpha, \beta) \times(\gamma, \delta)$ AND $\left(t_{0}, y_{0}\right) \in(\alpha, \beta) \times(\gamma, \delta)$ THEN there is a unique solution to the I.V.P in some "small box" $t_{0}-h<t<t_{0}+h$ that is contained in $\alpha<t<\beta$. Note: here the value of y_{0} matter.

Note: if the hypothesis are not meet, that does not mean that there is no solution, there may be none or many!

Types of 1st O.D.E: Separable - Linear (Integrating factor) - Bernoulli (change $u=y^{1-n}$) - Exact.
Separable: $y^{\prime}=g(t) h(y) \Longleftrightarrow \frac{d y}{d t}=g(t) h(y) \Longleftrightarrow \frac{d y}{h(y)}=g(t) d t$. Integrate to solve. Might lose the solution $h(y)=0$.
Linear: (1) Convert to standard form $y^{\prime}+p(t) y=g(t),(2)$ use integrating factor $\mu(t)=e^{\int p(t) d t}$, (3) cross multiply $\mu(t)\left[y^{\prime}+\right.$ $p(t) y=g(t)]$, (4) product rule $\frac{d}{d t}[\mu(t) y]=\mu(t) g(t)$, (5) integrate $\mu(t) y=\int(\mu(t) g(t) d t)$, solve right hand side, do not forget constant, and then divide by $\mu(t)$.

Bernoulli: $y^{\prime}+p(t) y=g(t) y^{n}$. If $n=0,1$ then Bernoulli equations are just linear equations. Otherwise, make the change $u=y^{n-1} \Longrightarrow u^{\prime}=(1-n) y^{-n} y^{\prime}$ to obtain a linear equation solvable by integrating factor. Once solved for u change back the solution to y.

Exact: $M(x, y)+N(x, y) y^{\prime}=0$ is exact $\Longleftrightarrow \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, since second derivatives of continuos functions are the same. Theorem: $M(x, y)+N(x, y) y^{\prime}=0$ is exact $\Longleftrightarrow \exists$ a unique function $\psi(x, y)$ such that $\frac{\partial \psi}{\partial x}=M ; \frac{\partial \psi}{\partial y}=N$. Then: $M+N y^{\prime}=0 \Longleftrightarrow \frac{\partial \psi}{\partial x}+\frac{\partial \psi}{\partial y} y^{\prime}=0 \Longleftrightarrow \frac{d}{d x} \psi(x, y)=0 \Longleftrightarrow \psi(x, y)=C$.
Types of problems: (1) check if exact. It it is: $\psi(x, y)=\int \frac{\partial \psi}{\partial x} \partial x=\int M \partial x=f(x, y)+h(y)$, where $h(y)$ is a pure function of y. Find $h(y)$ from: $\frac{\partial \psi}{\partial y}=\frac{\partial}{\partial y}[f(x, y)+h(y)]=N^{\prime}(x, y)+h^{\prime}(y)=N(x, y)$, hence from $h^{\prime}(y)$ we integrate $h(y)=\int h^{\prime}(y) d y$. The solution if $\psi(x, y)=f(x, y)+h(y)$. Note that we could have use $\psi(x, y)=\int \frac{\partial \psi}{\partial y} \partial y$. Finally, try to write y in explicit form. (2) if it is not exact but $\mu(x, y)$ is given, cross multiply and then solve as in (1). Finally, (3) it is not exact. Use $\mu(x)$ or $\mu(y)$ by solving $\frac{u^{\prime}}{u}=\frac{\partial M / \partial y-\partial N / \partial x}{N}$ or $\frac{u^{\prime}}{u}=\frac{\partial N / \partial x-\partial M / \partial y}{M}$, cross multiply and test if it is exact. If it is, solve as in (1). (Note: $\mu(x, y)$ is not unique, an easier μ makes the problem easier).

Euler's method Approximate the solution of $y^{\prime}=f(t, y), \quad y\left(t_{0}\right)=y_{0}$. Then, $y_{n}=y_{n-1}+h f\left(t_{n-1}, y_{n-1}\right), t_{n}=t_{0}+n h . h$ is the step size. This is a one step numerical method $O(n)$. In short: $y\left(t_{0}+n h\right)=y\left(t_{n}\right)=y_{n}=y_{n-1}+h f\left(t_{n-1}, y_{n-1}\right)$

Modeling with 1st O.D.E: Tank problems: $Q(t)=$ quantity of "salt" at time $t . \frac{d Q}{d t}=$ rate salt in - rate salt out. $q(t)=\frac{Q(t)}{V(t)}$ is the concentration of "salt" at time t. If $r_{1}=r_{2}$, then $V(t)$ is constant. Else, solve $\frac{d V}{d t}=r_{1}-r_{2}$ to get $V(t)$. Model: $\frac{d Q}{d t}=r_{1} \cdot q_{0}-r_{2} \cdot q(t)$.

Always check units!. This is a 1st O.D.E solvable by integrating factor or separating variables.

Second Order Linear Differential Equations:

General Form: $y^{\prime}=f\left(t, y, y^{\prime}\right)$. To apply methods and theorems use $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$.
Existence and Uniqueness, linear 2nd O.D.E: Consider the I.V.P: $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t), \quad y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{1}$. $\overline{\text { IF }} p(t), q(t), g(t)$ are continuos on $(\alpha, \beta) \underline{\text { AND }} t_{0} \in(\alpha, \beta)$ THEN there is a unique solution to the I.V.P in (α, β).

Superposition Principle: Let $L(y):=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \cdots(*)$ (homogeneous). IF y_{1}, y_{2} are two solutions of $(*)$ THEN $y=C_{1} y_{1}+C_{2} y_{2}$ is also a solution of $(*)$.

Definition: the Wronskian of two functions f, g is $W(f, g)(t)=\left(f \cdot g^{\prime}-f^{\prime} \cdot g\right)\left(\right.$ Wronskian is the $\operatorname{det}\left(\mathrm{f}, \mathrm{g}\right.$ _- $\left.\left.\mathrm{f}^{\prime}, \mathrm{g}^{\prime}\right)\right)$
Theorem IF y_{1}, y_{2} are two solutions of the O.D.E (only! no I.V.P) $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \underline{\text { AND }}$ the initial condition $\overline{y\left(t_{0}\right)=y_{0}} ; y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}$ is assigned, THEN is is always possible to choose constants C_{1}, C_{2} s.t. $y=C_{1} y_{1}+C_{2} y_{2}$ is a solution of the I.V.P \Longleftrightarrow the Wronskian is not zero at t_{0}

Theorem IF y_{1}, y_{2} are two solutions of $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \cdots(*)$, THEN the family of solutions $y=C_{1} y_{1}+C_{2} y_{2}$, include every solution of $(*) \Longleftrightarrow \exists t_{0}$ s.t. $W\left(y_{1}, y_{2}\right)\left(t_{0}\right) \neq 0$

Definition: IF y_{1}, y_{2} are two solutions of $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \cdots(*)$ THEN $\left\{y_{1}, y_{2}\right\}$ form a fundamental set of solutions (F.S.O.S) of $(*) \Longleftrightarrow \exists t_{o} \in \mathbb{R}$ s.t. $W\left(y_{1}, y_{2}\right)\left(t_{0}\right) \neq 0$

Theorem: Consider $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \cdots(*)$ whose coefficients $p(t), q(t)$ are continuous on I. Choose $t_{0} \in I$. Let y_{1} be the solution of $(*)$ that satisfies $y_{1}\left(t_{0}\right)=1 ; y_{1}^{\prime}\left(t_{0}\right)=0$. Let y_{2} be the solution of $(*)$ that satisfies $y_{2}\left(t_{0}\right)=0 ; y_{2}^{\prime}\left(t_{0}\right)=1$. THEN $\left\{y_{1}, y_{2}\right\}$ is a F.S.O.S since $W\left(y_{1}, y_{2}\right)\left(t_{0}\right)=1$.

2nd O.D.E. with constant coefficients: $a y^{\prime \prime}+b y^{\prime}+c y=g(t)$. If $g(t) \equiv 0$, then this is called the homogenous equation. Otherwise it is the non-homogeneous. For the homogeneous case: Suppose the solution is $y(t)=e^{r t}$. Then, $y^{\prime}(t)=r e^{r t}$ and $y^{\prime \prime}(t)=r^{2} e^{r t}$. Plug in the equation: $e^{r t}\left(a r^{2}+b r+c\right)=0$, since $e^{r t}$ is never zero, we get the characteristic equation: $a r^{2}+b r+c=0$ The solution depends on the root of this equation. However, in any case, by superposition principle, the general solution is $y(t)=C_{1} y_{1}+C_{2} y_{2}$, where y_{1}, y_{2} are the homogenous solutions.

Different real roots: Roots r_{1}, r_{2}. General solution $y=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t}$. Note that these solutions form a F.S.O.S since $W\left(e^{r_{1} t}, e^{r_{2} t}\right)=\left(r_{2}-r_{1}\right) e^{\left(r_{1}+r_{2}\right) t} \neq 0$ for any t.

Complex roots: $r_{1,2}=\lambda \pm i \mu$. (Euler's formula $e^{i \theta}=\cos (\theta)+i \sin (\theta)$). The F.S.O.S is given by $\left\{e^{\lambda t} \cos (\mu t), e^{\lambda t} \sin (\mu t)\right\}$, since $W\left(e^{\lambda t} \cos (\mu t), e^{\lambda t} \sin (\mu t)\right)=\mu e^{2 \lambda t} \neq 0$ for any t. (we assume $\mu \neq 0$, otherwise we are in the repeated roots case).
$\underline{\text { Repeated real roots: }} r_{1}=r_{2}=r$. The F.S.O.S is given by $\left\{e^{r t}, t e^{r t}\right\}$, since $W\left(e^{r t}, t e^{r t}\right)=e^{2 r t} \neq 0$ for any t.
Reduction of order: Given y_{1} a solution of $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \cdots(*)$, assume $y_{2}=V(t) y_{1}$. Find $V(t)$ knowing that y_{2} satisfies $(*)$. You end up with an equation like $p(t) V^{\prime \prime}+q(t) V^{\prime}=0$. Substitute $W=V^{\prime} \Longrightarrow W^{\prime}=V^{\prime \prime}$, solve for W as a 1st O.D.E (linear), and then change back to V. Finally, obtain a second solution $Y_{2}=V(t) y_{1}$

Method of Undetermined Coefficients $a y^{\prime \prime}+b y^{\prime}+c y=g(t) \neq 0$, where $g(t)=e^{a t}$ OR $g(t)=\cos (b t) ; \sin (b t)$ OR $g(t)=P_{n}(t)$ OR a combination of these. Then the solution is given by: $y_{\text {general }}=y_{h}+y_{p}$, where y_{h} is L.I from y_{p}.
y_{h} is the solution to the homogenous equation $a y^{\prime \prime}+b y^{\prime}+c y=0$.
y_{p} is the particular solution guess at from $g(t)$ with undetermined coefficients. We will consider only the following 3 cases:
exp. $g(t)=e^{a t}$, guess $y_{p}=A e^{a t}$
trig. $g(t)=\cos (b t)$ or $g(t)=\sin (b t)$, guess $y_{p}=A \cos (b t)+B \sin (b t)$
poly. $g(t)=P_{n}(t)=a_{n} t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0}$, guess $y_{p}=A_{n} t^{n}+A_{n-1} t^{n-1}+\cdots+A_{1} t+A_{0}$
Or combinations of these, in which case $y_{p}=$ sum of guess, each of functions of the above form.
Method of Variations of Parameters: $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t) \neq 0$, where $g(t)$ is any function. Need standard form.
The solution is $y=u_{1} y_{1}+u_{2} y_{2}$, where y_{1}, y_{2} are a F.S.O.S, .i.e. $y_{h}=C_{1} y_{2}+C_{2} y_{2}$. Find u_{1}, u_{2} with

$$
u_{1}^{\prime}=\frac{W_{1} \cdot g}{W\left(y_{1}, y_{2}\right)}=\frac{-y_{2} \cdot g}{W} \quad \text { and } \quad u_{2}^{\prime}=\frac{W_{2} \cdot g}{W\left(y_{1}, y_{2}\right)}=\frac{y_{1} \cdot g}{W}
$$

Higher Order Linear Differential Equations:

Existence and Uniqueness, linear Higher O.D.E: Consider the I.V.P:

$$
y^{(n)}+p_{n-1}(t) y^{(n-1)}+\cdots+p_{1}(t) y^{\prime}+p_{0} y=g(t), \quad y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}, \cdots, y^{(n-1)}\left(t_{0}\right)=y_{0}^{(n-1)}
$$

IF $t_{0} \in I$ is such that p_{n-1}, \cdots, p_{0} and $g(t)$ are continuous on I THEN there exists y a solution of the I.V.P on I.
Given $y^{(n)}+p_{n-1}(t) y^{(n-1)}+\cdots+p_{1}(t) y^{\prime}+p_{0} y=0$, there are n - linearly independent solutions so that $\left\{y_{1}, y_{2}, \cdots, y_{n}\right\}$ form a F.S.O.S. on I if there exists at least one point $t_{0} \in I$ such that $W\left(y_{1}, y_{2}, \cdots, y_{n}\right)\left(t_{0}\right) \neq 0$. The homogeneous solution is then $y_{h}=C_{1} y_{1}+C_{2} y_{2}+\cdots+C_{n} y_{n}$.

Higher O.D.E. with constant coefficients:
$\overline{a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y=0 \text {. Solve the characteristic equation: } a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{1}=0 \text {. Solution will de- }}$ pend on the roots just as in the case for the 2nd O.D.E. Make sure that the solutions are linearly independent, piece by piece.

Method of Undetermined Coefficients: exactly the same as 2nd O.D.E, but in higher dimensions.
Method of Variations of Parameters: $a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y=g(t)$, where $g(t)$ is any function. Suppose sol.:

$$
y=u_{1} y_{1}+u_{2} y_{2}+\cdots+u_{n} y_{n} \quad \text { where, } y_{1}, y_{2}, \cdots, y_{n} \text { are the homogeneous solutions }
$$

In general: $u_{i}^{\prime}=\frac{W_{i} \cdot g(t)}{W}$, where $W=W\left(y_{1}, \cdots, y_{n}\right)=\left|\begin{array}{cccc}y_{1} & y_{2} & \cdots & y_{n} \\ y_{1}^{\prime} & y_{2}^{\prime} & \cdots & y_{n}^{\prime} \\ \vdots & \vdots & \vdots & \\ y_{1}^{(n-1)} & y_{2}^{(n-1)} & \cdots & y_{n-1}^{(n-1)}\end{array}\right| \quad W_{i}=\left|\begin{array}{cccc}y_{1} & \cdots & 0 & \cdots \\ y_{1}^{\prime} & \cdots & 0 & \cdots \\ \vdots & \vdots & \vdots & y_{n}^{\prime} \\ y_{1}^{(n-1)} & \cdots & 1 & \cdots \\ y_{n-1}^{(n-1)}\end{array}\right|$,
in the i th column. To obtain u_{i}, simply integrate.

Power Series Solution of Linear 2nd O.D.E: $P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=g(x)$ (not necessarily constant coefficients).
First, review of power series: $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$, (power series about x_{0}).
Power series is convergent at the point x_{1} if $\sum_{n=0}^{\infty} a_{n}\left(x_{1}-x_{0}\right)^{n}<\infty$. P.S. divergent at the point x_{1} if $\sum_{n=0}^{\infty} a_{n}\left(x_{1}-x_{0}\right)^{n}= \pm \infty$. Power series are functions whose domain is only those point where it converges. We exclude the points where it diverges. A power series can be convergent everywhere or it may converge for only some values of x.

The power series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ is called absolutely convergent at x_{1} if: $\sum_{n=0}^{\infty}\left|a_{n}\left(x_{1}-x_{0}\right)^{n}\right|=\sum_{n=0}^{\infty}\left|a_{n}\right|\left|\left(x_{1}-x_{0}\right)^{n}\right|<\infty$. Theorem: IF $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ is absolutely convergent at x_{1} THEN it is convergent at x_{1}. (not necessarily the other way). Ratio Test: Consider the series $\sum_{n=0}^{\infty} b_{n}$, where b_{n} is a number. Then:

1. IF $\lim _{n \rightarrow \infty}\left|\frac{b_{n+1}}{b_{n}}\right|<1$ THEN the series is absolutely convergent.
2. IF $\lim _{n \rightarrow \infty}\left|\frac{b_{n+1}}{b_{n}}\right|>1$ THEN the series is divergent.
3. IF $\lim _{n \rightarrow \infty}\left|\frac{b_{n+1}}{b_{n}}\right|=1$ THEN the test is inconclusive.

We apply this test for power series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ as follow: $\lim _{n \rightarrow \infty}\left|\frac{b_{n+1}}{b_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}\left(x-x_{0}\right)^{n+1}}{a_{n}\left(x-x_{0}\right)^{n}}\right|=\left|x-x_{0}\right| \lim _{n \rightarrow \infty}\left|\frac{a_{n}+1}{a_{n}}\right|$ In general, to find the points of convergence, apply the ratio test to get absolute convergence when the series is <1 and divergence when >1, and test the boundaries $=1$ separately. To test boundaries remember:

1. Theorem: IF $\lim _{n \rightarrow \infty} b_{n} \neq 0$ THEN the series diverges.
2. p-test: $\sum_{n=0}^{\infty} \frac{1}{n^{p}}$ converges for $p>1$ and diverges for $p \leq 1$ (justification using integrals).
3. Alternating series: $\sum_{n=0}^{\infty}(-1)^{n} b_{n}$ is convergent if $\lim _{n \rightarrow \infty} b_{n}=0$; is divergent if $\lim _{n \rightarrow \infty} b_{n} \neq 0$

Taylor series: given $f(x): f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}$ is the taylor expansion of $f(x)$. To be able to write the Taylor Series, f should have n-th derivative. Only analytic functions (very nice functions - all derivatives exists at least in a small neigh. of x_{0}) have taylor series.

Shifting index: shifting index in series is very important to apply methods to solve 2nd O.D.E. Remember that to sum power series the powers of $\left(x-x_{0}\right)$ must agree and the indices must agree. First make the power $\left(x-x_{0}\right)^{n}$ agree and then the beginning of the series, possibly taking out terms.

Power Series Solution of Linear 2nd O.D.E: $P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=g(x)$; case $g(x)=0$ homogeneous case. Idea: find the power series that represents the solution of the O.D.E.

Definition: Consider $P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0$. We say that x_{0} is an ordinary point of the O.D.E if $P\left(x_{0}\right) \neq 0$. Otherwise, $P\left(x_{0}\right)=0, x_{0}$ is a singular point of the O.D.E. (The point is to choose a center x_{0} for the power series solution such that the point is "nice", i.e., an ordinary point).

Assuming that the solution can be represented as a power series about $x_{0} \in \mathbb{R} ; P\left(x_{0}\right) \neq 0$, an ordinary point, then $y=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}, y^{\prime}=\sum_{n=1}^{\infty} n a_{n}\left(x-x_{0}\right)^{n-1}, y=\sum_{n=2}^{\infty} n(n-1) a_{n}\left(x-x_{0}\right)^{n-2}$, plug in the O.D.E and find coeff. a_{n}. After plugging back into the equation, arrange series so that they can be summed and obtain the recurrence relation.
From recurrence relation try to find a general form of coefficients, or just find the first four or five. Plug back into the solution for y to obtain two solutions y_{1}, y_{2}.

Theorem: Consider $P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0 \cdots(*)$ a linear, 2nd O.D.E. Let x_{0} be an ordinary point $P\left(x_{0}\right) \neq 0$. Write in standard form:

$$
y^{\prime \prime}+\frac{Q(x)}{P(x)} y^{\prime}+\frac{R(x)}{P(x)} y=0 ; \quad \text { Let } p(x)=\frac{Q(x)}{P(x)} \text { and } q(x)=\frac{R(x)}{P(x)}
$$

IF $p(x)$ AND $q(x)$ are analytic at x_{0} THEN:
(1) The solution of $(*)$ can be written as: $y=a_{0} y_{1}+a_{1} y_{2}$, where y_{0} and y_{1} are analytic at x_{0}.
(2) Moreover, $\left\{y_{1}, y_{2}\right\}$ form a F.S.O.S
(3) Let ρ_{1} be the radius of convergence of $p(x)$ and ρ_{2} be the radius of convergence of $q(x)$. Then, the radius of convergence of y, call it ρ, is such that $\rho \geq \min \left\{\rho_{1}, \rho_{2}\right\}$

Note: in this course we'll use the definition of a function being analytic when all its derivatives exists and are continuous in a small ball around x_{0}. Equivalently, a function is analytic if the power series about x_{0} can be used to express the function. (Analytic is more restrictive than continuous, which was the only condition for E.U.T. in the first part of the course).

Euler's Equations: $P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0$. Consider x_{0} to be a singular point, i.e., $P\left(x_{0}\right)=0$.
We call Euler Equation:

$$
\left(x-x_{0}\right)^{2} y^{\prime \prime}+\alpha\left(x-x_{0}\right) y^{\prime}+\beta y=0
$$

We want to seek a solution about x_{0}. Note that all linear; 2nd O.D.E with singular points can be reduced to euler's equation. Assume the solution is $y=\left(x-x_{0}\right)^{r}$, for $r \in \mathbb{R}$. The idea is to find r. So y satisfies the equation. Also, $y^{\prime}=r\left(x-x_{0}\right)^{r-1}$ and $y^{\prime \prime}=r(r-1)\left(x-x_{0}\right)^{r-2}$. Plug and play. Since $\left(x-x_{0}\right)^{r}$ is never zero around x_{0}, we can cancel it to obtain the characteristic equation:

$$
r^{2}+(\alpha-1) r+\beta=0
$$

As before, find the two roots: r_{1}, r_{2}. The solution will be given according to these roots:
Different real roots: Roots r_{1}, r_{2}. General solution $y=C_{1}\left(x-x_{0}\right)^{r_{1}}+C_{2}\left(x-x_{0}\right)^{r_{2}}$.
$\underline{\text { Repeated real roots: }} r_{1}=r_{2}=r$. General solution $y=C_{1}\left(x-x_{0}\right)^{r}+C_{2}\left(x-x_{0}\right)^{r} \ln \left(\left|x-x_{0}\right|\right)$
Complex roots: $r_{1,2}=\lambda \pm i \mu$. General solution $y=\left(x-x_{0}\right)^{\lambda}\left[C_{1} \cos \left(\mu \ln \left(\left|x-x_{0}\right|\right)+C_{2} \sin \left(\mu \ln \left(\left|x-x_{0}\right|\right)\right]\right]\right.$
Note that for Euler's equation $P(x)=\left(x-x_{0}\right)^{2}=0 \Longleftrightarrow x=x_{0}$, has a solution everywhere but when $x=x_{0}$. Since the solution we assume to be a power function $y=x^{r}, x \neq x_{0}$, then the domain of the function is either to the left or right, i.e., $x>x_{0}$ or $x<x_{0}$, depending on the initial values given.

