
M343 Differential Equations Summary, Summer, 2013, Enrique Areyan
General Form of an nth Order Differential Equation:

an(t, y′, · · · , y(n−1))y(n) + an−1(t, y′, · · · , y(n−2))y(n−1) + · · · a1(t)y′ + a0y = g(t)

Classification:

Order: the order of a differential equation is the highest derivative in the equation.

Linear.: A differential equation is linear if the coefficients on each derivative of y term is a function of only the independent
variable, say t, i.e.:

an(t)y(n) + an−1(t)y(n−1) + · · · a1(t)y′ + a0y = g(t) → General nth order linear O.D.E

Solutions: Explicit → Written as a function of the independent variable: y(t). Implicit → Written as a function of both y and t.

I.V.P: O.D.E comes with initial conditions, y(t0) = y0, if it is a 1st O.D.E and y(t0) = y0, y
′(t0) = y′0 for 2nd Order

First Order Differential Equations:

General Form: y′ = f(t, y) . To apply methods and theorems use y′′ + p(t)y′ = g(t) .

Existence and Uniqueness, linear 1st O.D.E: Consider the I.V.P: y′ + p(t)y = g(t), y(t0) = y0.
IF p(t) and g(t) are continuos on (α, β) AND t0 ∈ (α, β) THEN there is a unique solution to the I.V.P in (α, β).

Existence and Uniqueness, 1st O.D.E: Consider the I.V.P: y′ = f(t, y), y(t0) = y0.
IF f and ∂f

∂y are continuos on (α, β)× (γ, δ) AND (t0, y0) ∈ (α, β)× (γ, δ) THEN there is a unique solution to the I.V.P in
some ”small box” t0 − h < t < t0 + h that is contained in α < t < β. Note: here the value of y0 matter.

Note: if the hypothesis are not meet, that does not mean that there is no solution, there may be none or many!

Types of 1st O.D.E: Separable - Linear (Integrating factor) - Bernoulli (change u = y1−n) - Exact.

Separable: y′ = g(t)h(y) ⇐⇒ dy

dt
= g(t)h(y) ⇐⇒ dy

h(y) = g(t)dt. Integrate to solve. Might lose the solution h(y) = 0.

Linear: (1) Convert to standard form y′ + p(t)y = g(t), (2) use integrating factor µ(t) = e
∫
p(t)dt , (3) cross multiply µ(t)[y′ +

p(t)y = g(t)], (4) product rule d

dt
[µ(t)y] = µ(t)g(t), (5) integrate µ(t)y =

∫
(µ(t)g(t)dt), solve right hand side, do not

forget constant, and then divide by µ(t).

Bernoulli: y′ + p(t)y = g(t)yn . If n = 0, 1 then Bernoulli equations are just linear equations. Otherwise, make the change
u = yn−1 =⇒ u′ = (1 − n)y−ny′ to obtain a linear equation solvable by integrating factor. Once solved for u change
back the solution to y.

Exact: M(x, y) +N(x, y)y′ = 0 is exact ⇐⇒ ∂M
∂y = ∂N

∂x , since second derivatives of continuos functions are the same.
Theorem: M(x, y) + N(x, y)y′ = 0 is exact ⇐⇒ ∃ a unique function ψ(x, y) such that ∂ψ

∂x = M ; ∂ψ∂y = N . Then:
M +Ny′ = 0 ⇐⇒ ∂ψ

∂x + ∂ψ
∂y y

′ = 0 ⇐⇒ d
dxψ(x, y) = 0 ⇐⇒ ψ(x, y) = C.

Types of problems: (1) check if exact. It it is: ψ(x, y) =
∫
∂ψ
∂x ∂x =

∫
M∂x = f(x, y) + h(y), where h(y) is a pure

function of y. Find h(y) from: ∂ψ
∂y = ∂

∂y [f(x, y) + h(y)] = N ′(x, y) + h′(y) = N(x, y), hence from h′(y) we integrate
h(y) =

∫
h′(y)dy. The solution if ψ(x, y) = f(x, y) + h(y) . Note that we could have use ψ(x, y) =

∫
∂ψ
∂y ∂y. Finally,

try to write y in explicit form. (2) if it is not exact but µ(x, y) is given, cross multiply and then solve as in (1). Finally,
(3) it is not exact. Use µ(x) or µ(y) by solving u′

u = ∂M/∂y−∂N/∂x
N or u′

u = ∂N/∂x−∂M/∂y
M , cross multiply and test if it

is exact. If it is, solve as in (1). (Note: µ(x, y) is not unique, an easier µ makes the problem easier).

Euler’s method Approximate the solution of y′ = f(t, y), y(t0) = y0. Then, yn = yn−1 + hf(tn−1, yn−1), tn = t0 + nh. h is
the step size. This is a one step numerical method O(n). In short: y(t0 + nh) = y(tn) = yn = yn−1 + hf(tn−1, yn−1)

Modeling with 1st O.D.E: Tank problems: Q(t) = quantity of ”salt” at time t. dQ
dt = rate salt in - rate salt out. q(t) = Q(t)

V (t)
is the concentration of ”salt” at time t. If r1 = r2, then V (t) is constant. Else, solve dV

dt = r1 − r2 to get V (t). Model:
dQ

dt
= r1 · q0 − r2 · q(t) . Always check units!. This is a 1st O.D.E solvable by integrating factor or separating variables.
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Second Order Linear Differential Equations:

General Form: y′ = f(t, y, y′) . To apply methods and theorems use y′′ + p(t)y′ + q(t)y = g(t) .

Existence and Uniqueness, linear 2nd O.D.E: Consider the I.V.P: y′′ + p(t)y′ + q(t)y = g(t), y(t0) = y0, y
′(t0) = y1.

IF p(t), q(t), g(t) are continuos on (α, β) AND t0 ∈ (α, β) THEN there is a unique solution to the I.V.P in (α, β).

Superposition Principle: Let L(y) := y′′ + p(t)y′ + q(t)y = 0 · · · (∗) (homogeneous). IF y1, y2 are two solutions of (∗)
THEN y = C1y1 + C2y2 is also a solution of (∗).

Definition: the Wronskian of two functions f, g is W (f, g)(t) = (f · g′ − f ′ · g) (Wronskian is the det(f,g——f’,g’))

Theorem IF y1, y2 are two solutions of the O.D.E (only! no I.V.P) y′′ + p(t)y′ + q(t)y = 0 AND the initial condition
y(t0) = y0; y′(t0) = y′0 is assigned, THEN is is always possible to choose constants C1, C2 s.t. y = C1y1 +C2y2 is a solution
of the I.V.P ⇐⇒ the Wronskian is not zero at t0

Theorem IF y1, y2 are two solutions of y′′ + p(t)y′ + q(t)y = 0 · · · (∗), THEN the family of solutions y = C1y1 + C2y2,
include every solution of (∗) ⇐⇒ ∃t0 s.t. W (y1, y2)(t0) 6= 0

Definition: IF y1, y2 are two solutions of y′′ + p(t)y′ + q(t)y = 0 · · · (∗) THEN {y1, y2} form a fundamental set of solu-
tions (F.S.O.S) of (∗) ⇐⇒ ∃to ∈ R s.t. W (y1, y2)(t0) 6= 0

Theorem: Consider y′′ + p(t)y′ + q(t)y = 0 · · · (∗) whose coefficients p(t), q(t) are continuous on I. Choose t0 ∈ I. Let
y1 be the solution of (∗) that satisfies y1(t0) = 1; y′1(t0) = 0. Let y2 be the solution of (∗) that satisfies y2(t0) = 0; y′2(t0) = 1.
THEN {y1, y2} is a F.S.O.S since W (y1, y2)(t0) = 1.

2nd O.D.E. with constant coefficients: ay′′ + by′ + cy = g(t) . If g(t) ≡ 0, then this is called the homogenous equation.
Otherwise it is the non-homogeneous. For the homogeneous case: Suppose the solution is y(t) = ert. Then, y′(t) = rert and
y′′(t) = r2ert. Plug in the equation: ert(ar2+br+c) = 0, since ert is never zero, we get the characteristic equation: ar2 + br + c = 0 .
The solution depends on the root of this equation. However, in any case, by superposition principle, the general solution is
y(t) = C1y1 + C2y2, where y1, y2 are the homogenous solutions.

Different real roots: Roots r1, r2. General solution y = C1e
r1t +C2e

r2t. Note that these solutions form a F.S.O.S since
W (er1t, er2t) = (r2 − r1)e(r1+r2)t 6= 0 for any t.

Complex roots: r1,2 = λ±iµ. (Euler’s formula eiθ = cos(θ)+isin(θ)). The F.S.O.S is given by {eλtcos(µt), eλtsin(µt)},
since W (eλtcos(µt), eλtsin(µt)) = µe2λt 6= 0 for any t. (we assume µ 6= 0, otherwise we are in the repeated roots case).

Repeated real roots: r1 = r2 = r. The F.S.O.S is given by {ert, tert}, since W (ert, tert) = e2rt 6= 0 for any t.

Reduction of order: Given y1 a solution of y′′ + p(t)y′ + q(t)y = 0 · · · (∗), assume y2 = V (t)y1. Find V (t) knowing that y2
satisfies (∗). You end up with an equation like p(t)V ′′ + q(t)V ′ = 0. Substitute W = V ′ =⇒W ′ = V ′′, solve for W as a 1st
O.D.E (linear), and then change back to V . Finally, obtain a second solution Y2 = V (t)y1

Method of Undetermined Coefficients ay′′+ by′+ cy = g(t) 6= 0, where g(t) = eat OR g(t) = cos(bt); sin(bt) OR g(t) = Pn(t)
OR a combination of these. Then the solution is given by: ygeneral = yh + yp , where yh is L.I from yp.
yh is the solution to the homogenous equation ay′′ + by′ + cy = 0.
yp is the particular solution guess at from g(t) with undetermined coefficients. We will consider only the following 3 cases:

exp. g(t) = eat, guess yp = Aeat

trig. g(t) = cos(bt) or g(t) = sin(bt), guess yp = Acos(bt) +Bsin(bt)

poly. g(t) = Pn(t) = ant
n + an−1t

n−1 + · · ·+ a1t+ a0, guess yp = Ant
n +An−1t

n−1 + · · ·+A1t+A0

Or combinations of these, in which case yp = sum of guess, each of functions of the above form.

Method of Variations of Parameters: y′′ + p(t)y′ + q(t)y = g(t) 6= 0, where g(t) is any function. Need standard form.

The solution is y = u1y1 + u2y2 , where y1, y2 are a F.S.O.S, .i.e. yh = C1y2 + C2y2. Find u1, u2 with

u′1 = W1 · g
W (y1, y2) = −y2 · g

W
and u′2 = W2 · g

W (y1, y2) = y1 · g
W
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Higher Order Linear Differential Equations:

Existence and Uniqueness, linear Higher O.D.E: Consider the I.V.P:

y(n) + pn−1(t)y(n−1) + · · ·+ p1(t)y′ + p0y = g(t), y(t0) = y0, y
′(t0) = y′0, · · · , y(n−1)(t0) = y

(n−1)
0

IF t0 ∈ I is such that pn−1, · · · , p0 and g(t) are continuous on I THEN there exists y a solution of the I.V.P on I.

Given y(n) + pn−1(t)y(n−1) + · · · + p1(t)y′ + p0y = 0, there are n- linearly independent solutions so that {y1, y2, · · · , yn}
form a F.S.O.S. on I if there exists at least one point t0 ∈ I such that W (y1, y2, · · · , yn)(t0) 6= 0. The homogeneous solution
is then yh = C1y1 + C2y2 + · · ·+ Cnyn .

Higher O.D.E. with constant coefficients:
any

(n) + an−1y
(n−1) + · · · + a1y = 0. Solve the characteristic equation: anrn + an−1r

n−1 + · · · + a1 = 0. Solution will de-
pend on the roots just as in the case for the 2nd O.D.E. Make sure that the solutions are linearly independent, piece by piece.

Method of Undetermined Coefficients: exactly the same as 2nd O.D.E, but in higher dimensions.

Method of Variations of Parameters: any(n) + an−1y
(n−1) + · · ·+ a1y = g(t), where g(t) is any function. Suppose sol.:

y = u1y1 + u2y2 + · · ·+ unyn where, y1, y2, · · · , yn are the homogeneous solutions

In general: u′i = Wi · g(t)
W

, whereW = W (y1, · · · , yn) =

∣∣∣∣∣∣∣∣∣
y1 y2 · · · yn
y′1 y′2 · · · y′n
...

...
...

y
(n−1)
1 y

(n−1)
2 · · · y

(n−1)
n−1

∣∣∣∣∣∣∣∣∣ Wi =

∣∣∣∣∣∣∣∣∣
y1 · · · 0 · · · yn
y′1 · · · 0 · · · y′n
...

...
...

y
(n−1)
1 · · · 1 · · · y

(n−1)
n−1

∣∣∣∣∣∣∣∣∣,
in the ith column. To obtain ui, simply integrate.

Power Series Solution of Linear 2nd O.D.E: P (x)y′′+Q(x)y′+R(x)y = g(x) (not necessarily constant coefficients).
First, review of power series:

∞∑
n=0

an(x− x0)n, (power series about x0).

Power series is convergent at the point x1 if
∞∑
n=0

an(x1−x0)n <∞. P.S. divergent at the point x1 if
∞∑
n=0

an(x1−x0)n = ±∞.

Power series are functions whose domain is only those point where it converges. We exclude the points where it diverges.
A power series can be convergent everywhere or it may converge for only some values of x.

The power series
∞∑
n=0

an(x − x0)n is called absolutely convergent at x1 if:
∞∑
n=0
|an(x1 − x0)n| =

∞∑
n=0
|an||(x1 − x0)n| < ∞.

Theorem: IF
∞∑
n=0

an(x− x0)n is absolutely convergent at x1 THEN it is convergent at x1. (not necessarily the other way).

Ratio Test: Consider the series
∞∑
n=0

bn, where bn is a number. Then:

1. IF lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ < 1 THEN the series is absolutely convergent.

2. IF lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ > 1 THEN the series is divergent.

3. IF lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ = 1 THEN the test is inconclusive.

We apply this test for power series
∞∑
n=0

an(x−x0)n as follow: lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ = lim
n→∞

∣∣∣∣an+1(x− x0)n+1

an(x− x0)n

∣∣∣∣ = |x−x0| lim
n→∞

∣∣∣∣an + 1
an

∣∣∣∣
In general, to find the points of convergence, apply the ratio test to get absolute convergence when the series is < 1
and divergence when > 1, and test the boundaries = 1 separately. To test boundaries remember:

1. Theorem: IF lim
n→∞

bn 6= 0 THEN the series diverges.

2. p-test:
∞∑
n=0

1
np

converges for p > 1 and diverges for p ≤ 1 (justification using integrals).

3. Alternating series:
∞∑
n=0

(−1)nbn is convergent if lim
n→∞

bn = 0; is divergent if lim
n→∞

bn 6= 0
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Taylor series: given f(x): f(x) =
∞∑
n=0

f (n)(x0)
n! (x−x0)n is the taylor expansion of f(x). To be able to write the Taylor Series,

f should have n-th derivative. Only analytic functions (very nice functions - all derivatives exists at least in a small neigh.
of x0) have taylor series.

Shifting index: shifting index in series is very important to apply methods to solve 2nd O.D.E. Remember that to sum
power series the powers of (x− x0) must agree and the indices must agree. First make the power (x− x0)n agree and then
the beginning of the series, possibly taking out terms.

Power Series Solution of Linear 2nd O.D.E: P (x)y′′ + Q(x)y′ + R(x)y = g(x); case g(x) = 0 homogeneous case.
Idea: find the power series that represents the solution of the O.D.E.

Definition: Consider P (x)y′′ + Q(x)y′ + R(x)y = 0. We say that x0 is an ordinary point of the O.D.E if P (x0) 6= 0.
Otherwise, P (x0) = 0, x0 is a singular point of the O.D.E. (The point is to choose a center x0 for the power series solution
such that the point is ”nice”, i.e., an ordinary point).

Assuming that the solution can be represented as a power series about x0 ∈ R;P (x0) 6= 0, an ordinary point, then
y =

∞∑
n=0

an(x− x0)n, y′ =
∞∑
n=1

nan(x− x0)n−1, y =
∞∑
n=2

n(n− 1)an(x− x0)n−2, plug in the O.D.E and find coeff. an.

After plugging back into the equation, arrange series so that they can be summed and obtain the recurrence relation.
From recurrence relation try to find a general form of coefficients, or just find the first four or five. Plug back into the
solution for y to obtain two solutions y1, y2.

Theorem: Consider P (x)y′′ + Q(x)y′ + R(x)y = 0 · · · (∗) a linear, 2nd O.D.E. Let x0 be an ordinary point P (x0) 6= 0.
Write in standard form:

y′′ + Q(x)
P (x)y

′ + R(x)
P (x)y = 0; Let p(x) = Q(x)

P (x) and q(x) = R(x)
P (x)

IF p(x) AND q(x) are analytic at x0 THEN:

(1) The solution of (∗) can be written as: y = a0y1 + a1y2, where y0 and y1 are analytic at x0.

(2) Moreover, {y1, y2} form a F.S.O.S

(3) Let ρ1 be the radius of convergence of p(x) and ρ2 be the radius of convergence of q(x).
Then, the radius of convergence of y, call it ρ, is such that ρ ≥ min{ρ1, ρ2}

Note: in this course we’ll use the definition of a function being analytic when all its derivatives exists and are continu-
ous in a small ball around x0. Equivalently, a function is analytic if the power series about x0 can be used to express the
function. (Analytic is more restrictive than continuous, which was the only condition for E.U.T. in the first part of the course).

Euler’s Equations: P (x)y′′ +Q(x)y′ +R(x)y = 0. Consider x0 to be a singular point, i.e., P (x0) = 0.
We call Euler Equation:

(x− x0)2y′′ + α(x− x0)y′ + βy = 0

We want to seek a solution about x0. Note that all linear; 2nd O.D.E with singular points can be reduced to euler’s equation.
Assume the solution is y = (x − x0)r, for r ∈ R. The idea is to find r. So y satisfies the equation. Also, y′ = r(x − x0)r−1

and y′′ = r(r − 1)(x − x0)r−2. Plug and play. Since (x − x0)r is never zero around x0, we can cancel it to obtain the
characteristic equation:

r2 + (α− 1)r + β = 0

As before, find the two roots: r1, r2. The solution will be given according to these roots:

Different real roots: Roots r1, r2. General solution y = C1(x− x0)r1 + C2(x− x0)r2 .

Repeated real roots: r1 = r2 = r. General solution y = C1(x− x0)r + C2(x− x0)rln(|x− x0|)

Complex roots: r1,2 = λ± iµ. General solution y = (x− x0)λ[C1cos(µln(|x− x0|) + C2sin(µln(|x− x0|)]]

Note that for Euler’s equation P (x) = (x − x0)2 = 0 ⇐⇒ x = x0, has a solution everywhere but when x = x0. Since the
solution we assume to be a power function y = xr, x 6= x0, then the domain of the function is either to the left or right, i.e.,
x > x0 or x < x0, depending on the initial values given.
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