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1 First Order Differential Equations

• Differential equations can be used to explain and predict new facts for about everything
that changes continuously.

• d2x

dt2
+ a

dx

dt
+ kx = 0.

• t is the independent variable, x is the dependent variable, a and k are parameters.

• The order of a differential equation is the highest deriviative in the equation.

• A differential equation is linear if it is linear in parameters such that the coefficients
on each deriviative of y term is a function of the independent variable (t).

• Solutions: Explicit → Written as a function of the independent variable. Implicit →
Written as a function of both y and t. (defines one or more explicit solutions.

1.1 Population Model

• Model:
dP

dt
= kP .

• Equilibrium solution occurs when
dP

dt
= 0.

• Solution: P (t) = Ae(kt).

• If k > 0, then limt→∞ P (t) = ∞. If k < 0, then limt→∞ P (t) = 0.

• Redefine model so it doesn’t blow up to infinity.

• dP

dt
= kP (1− P

N
).

• N is the carrying capacity of the population.

1.2 Seperation of Variables Technique

• dy

dt
= g(t)h(y).

• 1

h(y)
dy = g(t)dt.

• Integrate both sides and solve for y.

• You might lose the solution h(y) = 0.
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1.3 Mixing Problems

• dQ

dt
= Rate In - Rate Out.

• Consider a tank that initally contains 50 gallons of pure water. A salt solution contain-
ing 2 pounds of salt per gallon of water is poured into the tank at a rate of 3 gal/min.
The solution leaves the tank also at 3 gal/min.

• Therefore Input = 2(lb/gal)*3(gal/min).

• Output = ?(lbs/gal)*3(gal/min).

• Salt in Tank =
Q(t)

50
.

• Therefore output of salt =
Q(t)

50
(lbs/gal)*3(gal/min).

• dQ

dt
= Rate In - Rate Out = 2 lbs/gal*3gal/min -

Q(t)

50
(lbs/gal)*3(gal/min).

• 6 lbs/min -
3Q

50
lbs/min.

• Solve via seperation of Variables.

1.4 Existance and Uniqueness

• Given
dy

dt
= f(t, y). If f is continuous on some interval, then there exists at least one

solution on that interval.

• If both f(t, y) and
∂

∂y
f(t, y) are continuous on some interval then an initial value

problem on that interval is guaranteed to have exactly one Unique solution.

1.5 Phase Lines

• Takes all the information from a slope fields and captures it in a single vertical line.

• Draw a vertical line, label the equilibrium points, determine if the slope of y is positive
or negative between each equilibrium and label up or down arrows.

1.6 Classifying Equilibria and the Linearization Theorem

• Source: solutions tend away from an equilibrium → f ′(yo) > 0.

• Sink: solutions tend toward an equilibrium → f ′(yo) < 0.

• Node: Nither a source or a sink → f ′(yo) = 0 or DNE.
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1.7 Bifurcations

• Bifurcations occur at parameters where the equilibrium profile changes.

• Draw phase lines (y) for several values of a.

1.8 Linear Differential Equations and Integrating Factors

• Properties of Linear DE: If yp and yh are both solutions to a differential equation,
(particular and homogeneous), then yp + yh is also a solution.

• Using the integrating factor to solve linear differential equations such that
dy

dt
+P (t)y =

f(t).

• The integrating factor is therefore e(
∫

P (t)dt).

• Multiply both sides by the integrating factor.

• e(
∫

P (t)dt)dy

dt
+ e(

∫
P (t)dt)P (t)y = e(

∫
P (t)dt)f(t).

• then via chain rule ...

• d{e(
∫

P (t)dt)y}
dt

((Integrating factor * y))= e(
∫

P (t)dt)f(t).

• Then integrate to find solution.

1.9 Integration by Parts∫
udv = uv −

∫
vdu.
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2 Systems

• dx

dt
= ax− bxy,

dy

dt
= −cy + dxy.

• Equilibrium occurs when both differential equations are equal to zero.

• a and c are growth effects and b and d are interaction effects.

• To verify that x(t), y(t) is a solution to a system, take the deriviative of each and
compare them to the originial differerential equations with x and y plugged in.

• Converting a second order differential equation,
d2y

dt2
= y. Let v =

dy

dt
. Thus dv =

d2y

dt
.

2.1 Vector Notation

• A system of the form
dx

dt
= ax + bxy and

dy

dt
= cy + exy can be written in vector

notation.

•

d

dt
P(t) =

 dx

dt
dy

dt

 =

[
ax + bxy
cy + exy

]
. (1)

2.2 Decoupled System

• Completely decoupled:
dx

dt
= f(x),

dy

dt
= g(y).

• Partially decoupled:
dx

dt
= f(x),

dy

dt
= g(x, y).
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3 Systems II

• Matrix form.

• Homogeneous =
d

dt
X = AX.

• Non-homogeneous =
d

dt
X = AX + F.

• Linearity Principal

• Consider
d

dt
X = AX,where

A =

[
a b
c d

]
. (2)

• If X1(t) and X2(t) are solutions, then k1X1(t) + k2X2(t) is also a solution provided
X1(t) and X2(t) are linearly independent.

• Theorem: If A is a matrix wtih det A not equal to zero, then the only equilibrium

piont for the system
d

dt
X = AX is, [

0
0

]
. (3)

3.1 Straightline Solutions, Eigencool Eigenvectors and Eigenval-
ues

• A straightline solution to the system
d

dt
X = AX exists provided that,

A

[
x
y

]
= λ

[
x
y

]
. (4)

• To determine λ, compute the det[(A - λI)] =

det

[
a− λ b

c e− λ

]
= (a− λ)(e− λ)− bc = 0. (5)

.

• This expands to the characteristic polynomial =

λ2 − (a− d)λ + ae− bc = 0.

• Solving the characteristic polynomial provides us with the eigenvalues of A.
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3.2 Stability

Consider a linear 2 dimensional system with two nonzero, real, distinct eigenvalues, λ1 and
λ2.

• If both eigenvalues are positive then the origin is a source (unstable).

• If both eigenvalues are negative then the origin is a sink (stable).

• If the eigenvalues have different signs, then the origin is a saddle (unstable).

3.3 Complex Eigenvalues

• Euler’s Formula: ea+ib = eaeib = eacos(b) + ieasin(b).

• Given real and complex parts of a solution, the two parts can be treated as seperate
independent solutions and used in the linearization theorem to determine the general
solution.

• Stability: consider a linear two dimensional system with complex eigenvalues λ1 = a+ib
and λ2 = a− ib.

– If a is negative then solution spiral towards the origin (spiral sink).

– If a is positive then the solutions spiral away from the origin (spiral source).

– If a = 0 the solutions are periodic closed paths (neutral centers).

3.4 Repeated Eigenvalues

• Given the system,
d

dt
X = AX with one repeated eigenvalue, λ1.

• If V1 is an eigenvector, then X1(t) = eλtV1 is a straight line solution.

• Another solution is of the form X2(t) = eλt(tV1 + V2).

• Where V1 = (A− λI)V2.

• X1 and X2 will be independent and the general solution is formed in the usual manner.

3.5 Zero as an Eigenvalue

• If zero is an eigenvector, nothing changes but the form of the general solution is now

X(t) = k1V1 + k2e
λ2tV2.
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4 Second Order Differential Equations

• Form:
d2y

dt2
+ p(t)

dy

dt
= q(t)y = f(t).

• Homogeneous if f(t) = 0.

• given solutions y1 and y2 to the 2nd order differential equation, you must check the
Wronskian if both solutions are from real roots of the characteristic.

•
W = det

[
y1 y2

y′1 y′2

]
. (6)

• If W is equal to 0 anywhere on the interval of consideration, then y1 and y2 are not
linearly independent.

• General solution given y1 and y2 is found as usual by the linearization theorem.

• Characteristic polynomial of a 2nd order with constant coefficients: as2 + bs + c = 0.

• Solutions of the form y(t) = est.

• s = − b

2a
+ /−

√
b2 − 4ac

2a
.

– if b2 − 4ac > 0, then two distinct real roots.

– if b2 − 4ac < 0, then complex roots.

– b2 − 4ac = 0, then repeated real roots.

4.1 Two real distinct Roots

• Two real roots, s1 and s2.

• General solution = y(t) = k1e
s1t + k2e

s−2t.

4.2 Complex Roots

• Complex Roots, s1 = p + iq and s2 = p− iq.

• General solution = y(t) = k1e
ptcos(qt) + k2e

ptsin(qt).

4.3 Repeated Roots

• Repeated Root, s1.

• General solution = y(t) = k1e
−

b

2a
t
+ k2te

−
b

a2
t
.
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4.4 Nonhomogeneous with constant coefficents

• General solution = y(t) = yh + yp.

• Polynomial f(t).

– Look for particular solution of the form yp = Atn + Btn−1 + Ctn−2 + ... + Dt + E.

• Exponential f(t).

– Look for particular solution of the form yp = Aept.

• Sine or Cosine f(t).

– Look for particular solution of the form yp = Asin(at) + Bcos(at).

• Combination f(t).

– f(t) = Pn(t)eat,⇒ yp = (Atn + Btn−1 + Ctn−2 + ... + Dt + E)eat.

– f(t) = Pn(t)sin(at) or Pn(t)cos(at),⇒ yp = (A1tn +A2tn−1 +A3tn−2 + ...+A4t+
A5)cos(at) + (B1tn + B2tn−1 + B3tn−2 + ... + B4t + B5)sin(at).

– f(t) = eatsin(bt) or eatcos(bt),⇒ yp = Aeatcos(bt) + Beatsin(bt).

– f(t) = Pn(t)eatsin(bt) or Pn(t)eatcos(bt),⇒ yp = (A1tn + A2tn−1 + A3tn−2 + ... +
A4t + A5)eatcos(bt) + (B1tn + B2tn−1 + B3tn−2 + ... + B4t + B5)eatsin(bt).

• Superposition f(t).

– If f(t) is the sum of m terms of the forms previously described.

– yp = yp1 + yp2 + yp3 + ... + ypm.
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5 LaPlace Transformations

• Definition L{f(t)} =
∫∞

0
e−stf(t)dt = limT→∞

∫ T

0
e−stf(t)dt.

• ONLY PROVIDED THAT THE INTEGRAL CONVERGES!!! MUST BE OF EX-
PONENTIAL ORDER!!!

• L{f(t)} = F (s).

• L{1} =
1

s
.

• L{t} =
1

s2
.

• L{eat} =
1

s− a
.

• L{sin(ωt)} =
ω

s2 + ω2
.

• L{cos(ωt)} =
s

s2 + ω2
.

• Linear: L{αf(t) + βg(t)} = αF (s) + βG(s).

5.1 Inverse Laplace Transforms

• Linear: L−1{αF (s) + βG(s)} = αf(t) + βg(t).

5.2 Transform of a derivative

• L{f ′(t)} = sL(f(t)− f(0).

• L{f ′′(t)} = s2L(f(t)− sf(0)− f ′(0).
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