Differential Equations Cheatsheet

Jargon

General Solution: a family of functions, has parameters. Particular Solution: has no arbitrary parameters. Singular Solution: cannot be obtained from the general solution.

Linear Equations

$$y^{(n)}(x) + a_{n-1}(x)y^{(n-1)}(x) + \dots + a_1(x)y'(x) + a_0(x)y(x) = f(x)$$

1st-order

$$F(y', y, x) = 0$$
 $y' + a(x)y = f(x)$ I.F. $= e^{\int a(x)dx}$ Sol: $y = Ce^{-\int a(x)dx}$

Variable Separable	Homogeneous of degree 0
$\frac{dy}{dx} = f(x, y) \qquad A(x)dx + B(y)dy = 0$	$f(tx, ty) = t^0 f(x, y) = f(x, y)$
Test:	Sol: Reduce to var.sep. using:
$f(x,y)f_{xy}(x,y) = f_x(x,y)f_y(x,y)$	dy = dv
Sol: Separate and integrate on both sides.	$y = xv \qquad \frac{3}{dx} = v + x\frac{3}{dx}$
Exact	Bernoulli
M(x,y)dx + N(x,y)dy = 0 = dg(x,y)	$y' + p(x)y = q(x)y^n$
Iff $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$	Sol: Change var $z = \frac{1}{y^{n-1}}$ and divide by $\frac{1}{y^n}$.
Sol: Find $g(x, y)$ by integrating and comparing:	Reduction by Translation
$\int M dx$ and $\int N dy$	$y' = \frac{Ax + By + C}{Dx + Ey + F}$
Deduction to Event via Integrating Factor	Case I: Lines intersect
Reduction to Exact via integrating Factor	Sol: Put $x = X + h$ and $y = Y + k$,
I(x,y)[M(x,y)dx + N(x,y)dy] = 0	find h and k , solve var.sep. and translate back.
<u>Case I</u>	<u>Case II: Parallel Lines</u> $(A = B, D = E)$
If $\frac{M_y - N_x}{M} \equiv h(y)$ then $I(x, y) = e^{-\int h(y)dx}$	Sol: Put $u = Ax + By$, $y' = \frac{u' - A}{B}$ and solve.
Case II	
If $\frac{N_x - M_y}{N} \equiv g(x)$ then $I(x, y) = e^{-\int g(x)dx}$	
Case III	
If $M = yf(xy)$ and $N = xg(xy)$ then $I(x,y) = \frac{1}{2M-N}$	
x 1vi - y iv	

Principle of Superposition

 $\begin{array}{ll} \mathrm{If} & y''+ay'+by=f_1(x) & \mathrm{has\ solution\ } y_1(x) \\ y''+ay'+by=f_2(x) & \mathrm{has\ solution\ } y_2(x) \end{array} \text{ then } & \begin{array}{ll} y''+ay'+by=f(x)=f_1(x)+f_2(x) \\ & \mathrm{has\ solution\ } y(x)=y_1(x)+y_2(x) \end{array} \end{array}$

2nd-order Homogeneous

F(y'', y', y, x) = 0 y'' + a(x)y' + b(x)y = 0 Sol: $y_h = c_1y_1(x) + c_2y_2(x)$

Reduction of Order - MethodIf we already know y_1 , put $y_2 = vy_1$, expand in terms of v'', v', v , and put $z = v'$ and solve the reduced equation.Wronskian (Linear Independence) $y_1(x)$ and $y_2(x)$ are linearly independent iff $W(y_1, y_2)(x) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} \neq 0$	$\left[\begin{array}{c} \textbf{Constant Coefficients} \\ A.E. \lambda^2 + a\lambda + b = 0 \\ \hline \textbf{A. Real roots} \\ Sol: \ y(x) = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x} \\ \hline \textbf{B. Single root} \\ \hline \textbf{Sol: } y(x) = C_1 e^{\lambda x} + C_2 x e^{\lambda x} \\ \hline \textbf{C. Complex roots} \\ \hline \textbf{Sol: } y(x) = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x) \\ \text{with } \alpha = -\frac{a}{2} \text{ and } \beta = \frac{\sqrt{4b-a^2}}{2} \end{array}\right]$
Euler-Cauchy Equation $x^2y'' + axy' + by = 0$ where $x \neq 0$ $A.E.: \lambda(\lambda - 1) + a\lambda + b = 0$ Sol: $u(x)$ of the form x^{λ}	$\begin{array}{l} \underline{A. \ Real \ roots}\\ \hline Sol: \ y(x) = C_1 x^{\lambda_1} + C_2 x^{\lambda_2} \qquad x \neq 0\\ \hline \underline{B. \ Single \ root}\\ \hline Sol: \ y(x) = x^{\lambda} (C_1 + C_2 \ln x) \end{array}$

Reduction to Constant Coefficients: Use $x = e^t, t = \ln x$, C. Complex roots $(\lambda_{1,2} = \alpha \pm i\beta)$

2nd-order Non-Homogeneous

and rewrite in terms of t using the chain rule.

 $F(y'', y', y, x) = 0 \qquad y'' + a(x)y' + b(x)y = f(x) \qquad \text{Sol: } y = y_h + y_p = C_1y_1(x) + C_2y_2(x) + y_p(x)$

 $\overline{Sol: y(x) = x^{\alpha} \left[C_1 \cos(\beta \ln |x|) + C_2 \sin(\beta \ln |x|) \right]}$

Simple case: y', y missing	Simple case: y missing
y'' = f(x)	$y^{\prime\prime} = f(y^\prime, x)$
Sol: Integrate twice.	Sol: Change of var: $p = y'$ and then solve twice.
Simple case: y', x missing	Simple case: <i>x</i> missing
y'' = f(y)	$y^{\prime\prime}=f(y^\prime,y)$
Sol: Change of var: $p = y'$ + chain rule, then	Sol: Change of var: $p = y'$ + chain rule, then
$p\frac{dp}{du} = f(y)$ is var.sep.	$p\frac{dp}{du} = f(p, y)$ is 1st-order ODE.
Solve it, back-replace p and solve again.	Solve it, back-replace p and solve again.
Method of Undetermined Coefficients / "Guesswork" Sal: Assume $u(x)$ has same form as $f(x)$ with	Variation of Parameters (Lagrange Method)
undetermined constant coefficients.	(More general, but you need to know y_h)
Valid forms:	Sol: $y_p = v_1 y_1 + v_2 y_2 + \dots + v_n y_n$ $v'_1 y_1 + \dots + v'_n y_n = 0$
1 P(r)	$v'_{2}y'_{2} + \cdots + v'_{n}y'_{n} = 0$
$\begin{array}{c} 1. & I_n(x) \\ 2. & P_n(x)e^{ax} \end{array}$	$\cdots + \cdots + \cdots = 0$
3. $e^{ax}(P_n(x)\cos bx + Q_n(x)\sin bx)$	$v'_n y_b^{(n-1)} + \cdots + v'_n y_n^{(n-1)} = \phi(x)$
<i>Failure case:</i> If any term of $f(x)$ is a solution of y_h , multiply y_p by x and repeat until it works.	Solve for all v'_i and integrate.

Power Series Solutions

- 1. Assume $y(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$, compute y', y" 2. Replace in the original D.E. 3. Isolate terms of equal powers 4. Find recurrence relationship between the coefs.
- 5. Simplify using common series expansions

(Use y = vx, z = v' to find $y_2(x)$ if only $y_1(x)$ is known.)

Validity

For y'' + a(x)y' + b(x)y = 0if a(x) and b(x) are analytic in |x| < R, the power series also converges in |x| < R.

Ordinary Point: Power method success guaranteed. Singular Point: success not guaranteed.

Method of Frobenius for Regular Singular pt.

 $\begin{array}{ll} y_1(x) &= |x|^{r_1} \left(\sum_{n=0}^{\infty} c_n x^n \right), \quad c_0 = 1 \\ y_2(x) &= |x|^{r_2} \left(\sum_{n=0}^{\infty} c_n^* x^n \right), \quad c_0^* = 1 \end{array}$

Laplace Transform

FIXME TODO

Fourier Transform

FIXME TODO

Taylor Series variant

1. Differentiate both sides of the D.E. repeatedly 2. Apply initial conditions

3. Substitute into T.S.E. for y(x)

Regular singular point: if xa(x) and $x^2b(x)$ have a convergent MacLaurin series near point x = 0. (Use translation if necessary.)

Irregular singular point: otherwise.

<u>Case II:</u> $r_1 = r_2$

 $y(x) = x^{r}(c_{0} + c_{1}x + c_{2}x^{2} + \dots) = \sum_{n=0}^{\infty} c_{n}x^{r+n} \qquad y_{1}(x) = |x|^{r} \left(\sum_{n=0}^{\infty} c_{n}x^{n}\right), \qquad c_{0} = 1$ $y_{2}(x) = |x|^{r} \left(\sum_{n=1}^{\infty} c_{n}^{*}x^{n}\right) + y_{1}(x)\ln|x|$

Indicial eqn: $r(r-1) + a_0r + b_0 = 0$ <u>*Case III:*</u> r_1 and r_2 differ by an integer

 $\begin{array}{ll} \underline{Case \ I:} \ r_1 \ \text{and} \ r_2 \ \text{differ but not by an integer} & y_1(x) & = |x|^{r_1} \left(\sum_{n=0}^{\infty} c_n x^n \right), & c_0 = 1 \\ \\ u_1(x) & = |x|^{r_1} \left(\sum_{n=0}^{\infty} c_n^* x^n \right), & c_0 = 1 \\ \end{array}$