Differential Equations Cheatsheet

Jargon

eneral Solution: a family of functions, has parameters.
Particular Solution: has no arbitrary parameters.
Singular Solution: cannot be obtained from the general solution.

Linear Equations

$$
y^{(n)}(x)+a_{n-1}(x) y^{(n-1)}(x)+\cdots+a_{1}(x) y^{\prime}(x)+a_{0}(x) y(x)=f(x)
$$

1st-order

$$
F\left(y^{\prime}, y, x\right)=0 \quad y^{\prime}+a(x) y=f(x) \quad \text { I.F. }=e^{\int a(x) d x} \quad \text { Sol: } y=C e^{-\int a(x) d x}
$$

Variable Separable
$\quad$$\quad \frac{d y}{d x}=f(x, y) \quad A(x) d x+B(y) d y=0$ Test: $\quad f(x, y) f_{x y}(x, y)=f_{x}(x, y) f_{y}(x, y)$ Sol: Separate and integrate on both sides.

$M(x, y) d x+N(x, y) d y=0=d g(x, y)$

$$
\text { Iff } \quad \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Sol: Find $g(x, y)$ by integrating and comparing

$$
\int M d x \quad \text { and } \quad \int N d y
$$

Reduction to Exact via Integrating Factor

$I(x, y)[M(x, y) d x+N(x, y) d y]=0$
Case I
If $\frac{M_{y}-N_{x}}{M} \equiv h(y) \quad$ then $\quad I(x, y)=e^{-\int h(y) d x}$
Case II
If $\frac{N_{x}-M_{y}}{N} \equiv g(x) \quad$ then $\quad I(x, y)=e^{-\int g(x) d x}$
Case III
If $M=y f(x y)$ and $N=x g(x y)$ then $I(x, y)=$
$\frac{1}{x M-y N}$

Principle of Superposition

[^0]
2nd-order Homogeneous

$$
F\left(y^{\prime \prime}, y^{\prime}, y, x\right)=0 \quad y^{\prime \prime}+a(x) y^{\prime}+b(x) y=0 \quad \text { Sol: } y_{h}=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

Reduction of Order - Method
If we already know y_{1}, put $y_{2}=v y_{1}$,
expand in terms of $v^{\prime}, v^{\prime}, v$, and put $z=v^{\prime}$
and solve the reduced equation.

Wronskian (Linear Independence)
$y_{1}(x)$ and $y_{2}(x)$ are linearly independent iff
$\qquad W\left(y_{1}, y_{2}\right)(x)=\left\|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right\| \neq 0$

Constant Coefficients
 A. E $\quad \lambda^{2}+a \lambda+b=0$

A. Real roots

Sol: $y(x)=C_{1} e^{\lambda_{1} x}+C_{2} e^{\lambda_{2} x}$
B. Single root

Sol: $y(x)=C_{1} e^{\lambda x}+C_{2} x e^{\lambda x}$
C. Complex roots

Sol: $y(x)=e^{\alpha x}\left(C_{1} \cos \beta x+C_{2} \sin \beta x\right)$
with $\alpha=-\frac{a}{2}$ and $\beta=\frac{\sqrt{4 b-a^{2}}}{2}$

Euler-Cauchy Equation

$$
\begin{gathered}
x^{2} y^{\prime \prime}+a x y^{\prime}+b y=0 \quad \text { where } x \neq 0 \\
\text { A.E. } \quad \lambda(\lambda-1)+a \lambda+b=0
\end{gathered}
$$

A. Real roots

Sol: $y(x)=C_{1} x^{\lambda_{1}}+C_{2} x^{\lambda_{2}} \quad x \neq 0$
B. Single root

Sol: $y(x)=x^{\lambda}\left(C_{1}+C_{2} \ln |x|\right)$
ol: $y(x)$ of the form x^{λ}
Reduction to Constant Coefficients: Use $x=e^{t}, t=\ln x, \quad$ C. Complex roots $\left(\lambda_{1,2}=\alpha \pm i \beta\right)$
and rewrite in terms of t using the chain rule. and rewrite in terms of t using the chain rule. Sol: $y(x)=x^{\alpha}\left[C_{1} \cos (\beta \ln |x|)+C_{2} \sin (\beta \ln |x|)\right]$

2nd-order Non-Homogeneous

$F\left(y^{\prime \prime}, y^{\prime}, y, x\right)=0 \quad y^{\prime \prime}+a(x) y^{\prime}+b(x) y=f(x) \quad$ Sol: $y=y_{h}+y_{p}=C_{1} y_{1}(x)+C_{2} y_{2}(x)+y_{p}(x)$

Simple case: $\quad y^{\prime}, y$ missing
$\qquad y^{\prime \prime}=f(x)$
Sol: Integrate twice.

$$
\begin{aligned}
& \text { Simple case: } y \text { missing } \\
& \qquad y^{\prime \prime}=f\left(y^{\prime}, x\right) \\
& \text { Sol: Change of var: } p=y^{\prime} \text { and then solve twice. }
\end{aligned}
$$

Simple case: y^{\prime}, x missing
$\qquad y^{\prime \prime}=f(y)$
Sol: Change of var: $p=y^{\prime}+$ chain rule, then
$p \frac{d p}{d y}=f(y)$ is var.sep.
Solve it, back-replace p and solve again.

Simple case: x missing

$$
y^{\prime \prime}=f\left(y^{\prime}, y\right)
$$

Sol: Change of var: $p=y^{\prime}+$ chain rule, then $p \frac{d p}{d y}=f(p, y)$ is 1 st-order ODE $p \frac{p}{d y}=f(p, y)$ is 1st-order ODE.
Solve it, back-replace p and solve again.

Method of Undetermined Coefficients / "Guesswork"

Sol: Assume $y(x)$ has same form as $f(x)$ with undetermined constant coefficients.
Valid forms:

1. $P_{n}(x)$
 2. $P_{n}(x) e^{a x}$

3. $e^{a x}\left(P_{n}(x) \cos b x+Q_{n}(x) \sin b x\right.$

Failure case: If any term of $f(x)$ is a solution of y_{h}, multiply y_{p} by x and repeat until it works.

Variation of Parameters (Lagrange Method)

(More general, but you need to know y_{h}) Sol: $y_{p}=v_{1} y_{1}+v_{2} y_{2}+\cdots+v_{n} y_{n}$
$\begin{array}{ll}v_{1}^{\prime} y_{1} & +\cdots+v_{n}^{\prime} y_{n} \\ v_{2}^{\prime} y_{2}^{\prime} & +\cdots+v_{n}^{\prime}\end{array}$
$v_{2} y_{2}+\cdots+v_{n} y_{n}=0$
$v_{n}^{\prime} y_{b}^{(n-1)}+\cdots+v_{n}^{\prime} y_{n}^{(n-1)}=\phi(x)$
Solve for all v_{i}^{\prime} and integrate.

Power Series Solutions

1. Assume $y(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$, compute $\mathrm{y}^{\prime}, \mathrm{y}^{\prime \prime}$
2. Replace in the original D.E.
3. Isolate terms of equal power
4. Find recurrence relationship between the coefs.
5. Simplify using common series expansions

Taylor Series variant

1. Differentiate both sides of the D.E. repeatedly
2. Apply initial conditions
3. Substitute into T.S.E. for $y(x)$
(Use $y=v x, z=v^{\prime}$ to find $y_{2}(x)$ if only $y_{1}(x)$ is known.)

Validity

For $y^{\prime \prime}+a(x) y^{\prime}+b(x) y=0$
if $a(x)$ and $b(x)$ are analytic in $|x|<R$,
the power series also converges in $|x|<R$.
Ordinary Point: Power method success guaranteed
Singular Point: success not guaranteed

Method of Frobenius for Regular Singular pt.

$$
\begin{aligned}
& y(x)=x^{r}\left(c_{0}+c_{1} x+c_{2} x^{2}+\cdots\right)=\sum_{n=0}^{\infty} c_{n} x^{r+n} \\
& \text { Indicial eqn: } \quad r(r-1)+a_{0} r+b_{0}=0 \\
& \text { Case I: } r_{1} \text { and } r_{2} \text { differ but not by an integer } \\
& y_{1}(x)=|x|^{r_{1}}\left(\sum_{n=0}^{\infty} c_{n} x^{n}\right), \quad c_{0}=1 \\
& y_{2}(x)=|x|^{r_{2}}\left(\sum_{n=0}^{\infty} c_{n}^{*} x^{n}\right), \quad c_{0}^{*}=1 \\
& \text { Case II: } r_{1}=r_{2} \\
& y_{1}(x) \quad=|x|^{r}\left(\sum_{n=0}^{\infty} c_{n} x^{n}\right), \quad c_{0}=1 \\
& y_{2}(x)=|x|^{r}\left(\sum_{n=1}^{\infty} c_{n}^{*} x^{n}\right)+y_{1}(x) \ln |x| \\
& \text { Case III: } r_{1} \text { and } r_{2} \text { differ by an integer } \\
& y_{1}(x) \quad=|x|^{r_{1}}\left(\sum_{n=0}^{\infty} c_{n} x^{n}\right), \quad c_{0}=1 \\
& y_{2}(x)=|x|^{r_{2}}\left(\sum_{n=0}^{\infty} c_{n}^{*} x^{n}\right)+c_{1}^{*} y_{1}(x) \ln |x|, \quad c_{0}^{*}=1
\end{aligned}
$$

Regular singular point
Regular singular point:
if $x a(x)$ and $x^{2} b(x)$ have a convergent MacLaurin series near point $x=0$. (Use translation if necessary.)
Irregular singular point: otherwise.

Laplace Transform

FIXME TODO

Fourier Transform

FIXME TODO

[^0]: If $\begin{gathered}y^{\prime \prime}+a y^{\prime}+b y=f_{1}(x) \\ y^{\prime \prime}+a y^{\prime}+b y=f_{2}(x)\end{gathered}$ has solution $y_{1}(x)$ has solution $y_{2}(x)$ anen $\begin{gathered}y^{\prime \prime}+a y^{\prime}+b y=f(x)=f_{1}(x)+f_{2}(x) \\ \text { has solution: } y(x)=y_{1}(x)+y_{2}(x)\end{gathered}$

