## M343 Homework 7

## Enrique Areyan <br> June 05, 2013

## Section 4.2

16. Consider the equation $y^{(4)}-5 y^{\prime \prime}+4 y=0$. The solution is given by solving the characteristic equation:

$$
r^{4}-5 r^{2}+4=0
$$

It is not hard to see (or using the rational root theorem) that 1 is a root of this equation, and so we can divide the equation by $r-1$ to obtain: $r^{4}-5 r^{2}+4=0 \Longleftrightarrow(r-1)\left(r^{3}+r^{2}-4 r-4\right)=0$. Likewise, is is not hard to see that -2 is a root of $\left(r^{3}+r^{2}-4 r-4\right)$ and so, by polynomial division $(r-1)\left(r^{3}+r^{2}-4 r-4\right)=0 \Longleftrightarrow(r-1)(r+2)\left(r^{2}-r-2\right)=0 \Longleftrightarrow(r-1)(r+2)(r+1)(r-2)=0$.
The solution is therefore:

$$
y=C_{1} e^{t}+C_{2} e^{-2 t}+C_{3} e^{-t}+C_{4} e^{2 t}
$$

21. Consider the equation $y^{(8)}+8 y^{(4)}+16 y=0$. The solution is given by solving the characteristic equation:

$$
r^{8}+8 r^{4}+16=0 \Longleftrightarrow\left(r^{4}+4\right)^{2}=0 \Longleftrightarrow r_{1,2, \cdots, 8}= \pm 1+i
$$

The solution is therefore:

$$
y=e^{t}\left[\left(C_{1}+C_{2} t\right) \cos (t)+\left(C_{3}+C_{4} t\right) \sin (t)\right]+e^{-t}\left[\left(C_{5}+C_{6} t\right) \cos (t)+\left(C_{7}+C_{8} t\right) \sin (t)\right]
$$

29. Consider the initial value problem $y^{\prime \prime \prime}+y^{\prime}=0 ; \quad y(0)=0 ; \quad y^{\prime}(0)=1 ; \quad y^{\prime \prime}(0)=2$.

The solution is given by solving the characteristic equation:

$$
r^{3}+r=0 \Longleftrightarrow r\left(r^{2}+1\right)=0 \Longrightarrow r_{1}=0 ; \quad r_{2,3}= \pm i
$$

The general solution is therefore:

$$
y=C_{1}+C_{2} \cos (t)+C_{3} \sin (t)
$$

The solution to the I.V.P is given by solving the system of linear equations:

$$
\left\{\begin{array}{l}
y(0)=0=C_{1}+C_{2} \Longrightarrow C_{1}=-C_{2} \Longrightarrow C_{1}=2 \\
y^{\prime}(0)=1=-C_{2} \sin (0)+C_{3} \cos (0) \Longrightarrow C_{3}=1 \\
y^{\prime \prime}(0)=2=-C_{2} \cos (0)-C_{3} \sin (0) \Longrightarrow C_{2}=-2
\end{array}\right.
$$

The solution to the I.V.P is:

$$
y=2-2 \cos (t)+\sin (t)
$$

The graph of the solution is:

Plots :


## Plot[ $\sin (\mathrm{x})-2 \cos (\mathrm{x})+2$ ] | Computed by Wolfram|Alpha

The solution oscillates as $t \rightarrow \infty$
32. Consider the initial value problem $y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=0 ; \quad y(0)=2 ; \quad y^{\prime}(0)=-1 ; \quad y^{\prime \prime}(0)=-2$.

The solution is given by solving the characteristic equation:

$$
r^{3}-r^{2}+r-1=0
$$

It is not hard to see (or using the rational root theorem) that 1 is a root of this equation, and so we can divide the equation by $r-1$ to obtain:

$$
r^{3}-r^{2}+r-1=0 \Longleftrightarrow(r-1)\left(r^{2}+1\right)=0 \Longrightarrow r_{1}=1 ; r_{2,3}= \pm i
$$

The general solution is therefore:

$$
y=C_{1} e^{t}+C_{2} \cos (t)+C_{3} \sin (t)
$$

The solution to the I.V.P is given by solving the system of linear equations:

$$
\left\{\begin{array}{l}
y(0)=2=C_{1}+C_{2} \Longrightarrow C_{1}=-C_{2} \Longrightarrow C_{2}=2 \\
y^{\prime}(0)=-1=C_{1}-C_{2} \sin (0)+C_{3} \cos (0) \Longrightarrow-1=C_{1}+C_{3} \Longrightarrow C_{1}=0 \\
y^{\prime \prime}(0)=-2=C_{1}-C_{2} \cos (0)-C_{3} \sin (0) \Longrightarrow-2=C_{1}-C_{2} \Longrightarrow C_{3}=-1
\end{array}\right.
$$

The solution to the I.V.P is:

$$
y=2 \cos (t)-\sin (t)
$$

The graph of the solution is:

Plots :


## Plot[2 $\cos (x)-\sin (x)]$ | Computed by Wolfram|Alpha

The solution oscillates as $t \rightarrow \infty$

## Section 4.3

10. Consider the initial value problem $y^{(4)}+2 y^{\prime \prime}+y=3 t+4 ; \quad y(0)=0 ; \quad y^{\prime}(0)=0 ; \quad y^{\prime \prime}(0)=y^{\prime \prime \prime}(0)=1$. The solution is given by

$$
y_{g}=y_{h}+y_{p}, \quad \text { where },
$$

$y_{h}$ is given by solving the characteristic equation:

$$
r^{4}+2 r^{2}+1=0 \Longleftrightarrow\left(r^{2}+1\right)^{2}=0 \Longrightarrow r_{1,2}= \pm i ; \quad r_{3,4}= \pm i
$$

The homogeneous solution is:

$$
y_{h}=C_{1} \cos (t)+C_{2} \sin (t)+C_{3} t \cos (t)+C_{4} t \sin (t)
$$

$\underline{y_{p}}$ guess for particular solution: $y_{p}=A t+B$. Then, $y_{p}^{\prime}=A$ and $y_{p}^{\prime \prime}=y_{p}^{\prime \prime \prime}=y^{(4)}=0$. Suppose $y_{p}$ satisfies:

$$
y_{p}^{(4)}+2 y_{p}^{\prime \prime}+y_{p}=3 t+4 \Longleftrightarrow 0+2 \cdot 0+A t+B=3 t+4 \Longrightarrow A=3 ; B=4
$$

The general solution is therefore:

$$
y=C_{1} \cos (t)+C_{2} \sin (t)+C_{3} t \cos (t)+C_{4} t \sin (t)+3 t+4
$$

Solving for $C_{1}, C_{2}, C_{3}, C_{4}$;

$$
\left\{\begin{array}{l}
y(0)=0=C_{1}+4 \Longrightarrow C_{1}=-4 \\
y^{\prime}(0)=0=-C_{1} \sin (0)+C_{2} \cos (0)+C_{3} \cos (0)-C_{3} t \sin (0)+C_{4} \sin (0)+C_{4} t \cos (0)+3 \Longrightarrow C_{4}=-\frac{3}{2} \\
y^{\prime \prime}(0)=1=-\cos (0)-C_{2} \sin (0)-2 C_{3} \sin (0)-C_{3} t \cos (0)+2 C_{4} \cos (0)-C_{4} t \sin (0) \Longrightarrow C_{3}=1 \\
y^{\prime \prime \prime}(0)=1=C_{1} \sin (0)-C_{2} \cos (0)-3 C_{3} \cos (0)+C_{3} \operatorname{tin}(0)-3 C_{4} \sin (0)-C_{4} t \sin (0) \Longrightarrow C_{2}=-4
\end{array}\right.
$$

The solution to the I.V.P is:

$$
y=-4 \cos (t)-4 \sin (t)+t \cos (t)-\frac{3}{2} t \sin (t)+3 t+4
$$

11. Consider the initial value problem $y^{\prime \prime \prime}-3 y^{\prime \prime}+2 y^{\prime}=t+e^{t} ; \quad y(0)=1 ; \quad y^{\prime}(0)=-\frac{1}{4} ; \quad y^{\prime \prime}(0)=-\frac{3}{2}$. The solution is given by

$$
y_{g}=y_{h}+y_{p}, \quad \text { where },
$$

$\underline{y_{h}}$ is given by solving the characteristic equation:

$$
r^{3}-3 r^{2}+2 r=0 \Longleftrightarrow r(r-1)(r-2)=0 \Longrightarrow r_{1}=0 ; \quad r_{2}=1 ; \quad r_{3}=2
$$

The homogeneous solution is:

$$
y_{h}=C_{1}+C_{2} e^{t}+C_{3} e^{2 t}
$$

$\underline{y_{p}}$ guess for particular solution: $y_{p}=t(A t+B)+C t e^{t}$. Then:

$$
\begin{gathered}
y_{p}^{\prime}=2 A t+B+C e^{t}+C t e^{t} \\
y_{p}^{\prime \prime}=2 A+2 C e^{t}+C t e^{t} \\
y_{p}^{\prime \prime \prime}=3 C e^{t}+C t e^{t}
\end{gathered}
$$

Suppose $y_{p}$ satisfies:

$$
\begin{aligned}
t+e^{t} & =y_{p}^{\prime \prime \prime}-3 y_{p}^{\prime \prime}+2 y_{p}^{\prime} \\
& =3 C e^{t}+C t e^{t}-3\left(2 A+2 C e^{t}+C t e^{t}\right)+2\left(2 A t+B+C e^{t}+C t e^{t}\right) \\
& =e^{t}(3 C-6 C+2 C)+t e^{t}(C-3 C+2 C)+4 A t+2 B-6 A \\
& =-C e^{t}+4 A t+2 B-6 A
\end{aligned}
$$

Therefore, $A-\frac{1}{4}, B=\frac{3}{4}, C=-1$ The general solution is therefore:

$$
y=C_{1}+C_{2} e^{t}+C_{3} e^{2 t}+\frac{1}{4} t^{2}+\frac{3}{4} t-t e^{t}
$$

Solving for $C_{1}, C_{2}, C_{3}$;

$$
\left\{\begin{array}{l}
y(0)=1=C_{1}+C_{2}+C_{3} \Longrightarrow C_{1}=1 \\
y^{\prime}(0)=-\frac{1}{4}=C_{2}+2 C_{3}-\frac{1}{4} \Longrightarrow C_{3}=0 \\
y^{\prime \prime}(0)=-\frac{3}{2}=C_{2}+4 C_{3}-\frac{3}{2} \Longrightarrow C_{2}=0
\end{array}\right.
$$

The solution to the I.V.P is:

$$
y=\frac{1}{4}\left(t^{2}+3 t\right)-t e^{t}+1
$$

14. Consider the equation $y^{\prime \prime \prime}-y^{\prime}=t e^{-t}+2 \cos (t)$. Solving the characteristic equation:

$$
r^{3}-r=0 \Longleftrightarrow r\left(r^{2}-1\right)=0 \Longrightarrow r_{1}=0 ; r_{2}=1 ; r_{3}=-1
$$

So the homogeneous solution is

$$
y_{h}=C_{1}+C_{2} e^{t}+C_{3} e^{-t}
$$

A guess for the particular solution $y_{p}$ is:

$$
y_{p}=\left(A t^{2}+B t\right) e^{-t}+C \cos (t)+D \sin (t)
$$

15. Consider the equation $y^{(4)}-2 y^{\prime \prime}+y=e^{t}+\sin (t)$. Solving the characteristic equation:

$$
r^{4}-2 r^{2}+1=0 \Longleftrightarrow\left(r^{2}-1\right)^{2}=0 \Longrightarrow r_{1}=1 ; r_{2}=-1 ; r_{3}=1 ; r_{4}=-1
$$

So the homogeneous solution is

$$
y_{h}=C_{1} e^{t}+C_{2} e^{-t}+C_{3} t e^{t}+C_{4} t e^{-t}
$$

A guess for the particular solution $y_{p}$ is:

$$
y_{p}=A t^{2} e^{t}+B \sin (t)+C \cos (t)
$$

## Section 4.4

1. $y^{\prime \prime \prime}+y^{\prime}=\tan (t)$

The solution by Variation of Parameters is given by

$$
y_{g}=u_{1} y_{1}+u_{2} y_{2}+u_{3} y_{3}, \quad \text { where }
$$

$y_{1}, y_{2}, y_{3}$ are found by solving the homogeneous eq. In turn, $\underline{y_{h}}$ is given by solving the characteristic equation:

$$
r^{3}+r=0 \Longleftrightarrow r\left(r^{2}+1\right)=0 \Longrightarrow r_{1}=0 ; \quad r_{2,3}= \pm i
$$

The homogeneous solution is:

$$
y_{h}=C_{1}+C_{2} \cos (t)+C_{3} \sin (t)
$$

Let $y_{1}=e^{t} ; \quad y_{2}=\cos (t) ; \quad y_{3}=\sin (t)$. Then, as previously calculated:

$$
\begin{gathered}
W(1, \cos (t), \sin (t))=\left|\begin{array}{ccc}
1 & \cos (t) & \sin (t) \\
0 & -\sin (t) & \cos (t) \\
0 & -\cos (t) & -\sin (t)
\end{array}\right|= \\
\left|\begin{array}{cc}
-\sin (t) & \cos (t) \\
-\cos (t) & -\sin (t)
\end{array}\right|-\cos (t)\left|\begin{array}{cc}
0 & \cos (t) \\
0 & -\sin (t)
\end{array}\right|+\sin (t)\left|\begin{array}{cc}
0 & -\sin (t) \\
0 & -\cos (t)
\end{array}\right|=\sin ^{2}(t)+\cos ^{2}(t)=1 \\
W_{1}=1 ; \quad W_{2}=-\cos (t) ; \quad W_{3}=-\sin (t) \\
u_{1}^{\prime}=\frac{W_{1} \cdot g}{W}=\tan (t) \Longrightarrow u_{1}=-\ln (|\cos (t)|)+C_{1} \\
u_{2}^{\prime}=\frac{W_{2} \cdot g}{W}=-\sin (t) \Longrightarrow u_{2}=\cos (t)+C_{2} \\
u_{3}^{\prime}=\frac{W_{3} \cdot g}{W}=-\sin (t) \tan (t) \Longrightarrow\left(\text { trigonometric substitution...) } u_{3}=\sin (t)-\ln (|\sec (t)+\tan (t)|)+C_{3}\right.
\end{gathered}
$$

Therefore

$$
y_{g}=u_{1} y_{1}+u_{2} y_{2}+u_{3} y_{3} \Longleftrightarrow y=C_{1}+C_{2} \cos (t)+C_{3} \sin (t)-\ln (|\cos (t)|)-\sin (t) \ln (|\sec (t)+\tan (t)|)
$$

5. $y^{\prime \prime}-y^{\prime \prime}+y^{\prime}-y=e^{-t} \sin (t)$

The solution by Variation of Parameters is given by

$$
y_{g}=u_{1} y_{1}+u_{2} y_{2}+u_{3} y_{3}, \quad \text { where },
$$

$y_{1}, y_{2}, y_{3}$ are found by solving the homogeneous eq. In turn, $\underline{y_{h}}$ is given by solving the characteristic equation:

$$
r^{3}-r^{2}+r-1=0 \Longleftrightarrow(r-1)\left(r^{2}+1\right)=0 \Longrightarrow r_{1}=0 ; \quad r_{2,3}= \pm i
$$

The homogeneous solution is:

$$
y_{h}=C_{1} e^{t}+C_{2} \cos (t)+C_{3} \sin (t)
$$

Let $y_{1}=e^{t} ; \quad y_{2}=\cos (t) ; \quad y_{3}=\sin (t)$. Then, as previously calculated:

$$
W\left(e^{t}, \cos (t), \sin (t)\right)=\left|\begin{array}{ccc}
e^{t} & \cos (t) & \sin (t) \\
e^{t} & -\sin (t) & \cos (t) \\
e^{t} & -\cos (t) & -\sin (t)
\end{array}\right|=
$$

$$
\begin{gathered}
e^{t}\left|\begin{array}{cc}
-\sin (t) & \cos (t) \\
-\cos (t) & -\sin (t)
\end{array}\right|-\cos (t)\left|\begin{array}{cc}
e^{t} & \cos (t) \\
e^{t} & -\sin (t)
\end{array}\right|+\sin (t)\left|\begin{array}{cc}
e^{t} & -\sin (t) \\
e^{t} & -\cos (t)
\end{array}\right|=2 e^{t} \\
W_{1}=1 ; \quad W_{2}=e^{t}(\sin (t)-\cos (t)) ; \quad W_{3}=e^{t}(\cos (t)-\sin (t))
\end{gathered}
$$

$u_{1}^{\prime}=\frac{W_{1} \cdot g}{W}=\frac{\sin (t)}{2 e^{2 t}} \Longrightarrow$ (integration by parts twice...) $u_{1}=-\frac{1}{10}\left[e^{-2 t}(2 \sin (t)+\cos (t))\right]+C_{1}$
$u_{2}^{\prime}=\frac{W_{2} \cdot g}{W}=\frac{\sin ^{2}(t)-\sin (t) \cos (t)}{2 e^{t}} \Longrightarrow u_{2}=\frac{1}{20 e^{t}}[-\sin (2 t)+3 \cos (2 t)-5]+C_{2}$
$u_{3}^{\prime}=\frac{W_{3} \cdot g}{W}=-\tan (t) \Longrightarrow u_{3}=-\frac{1}{20 e^{t}}[-\sin (2 t)+3 \cos (2 t)-5]+C_{3}$
Therefore

$$
y_{g}=u_{1} y_{1}+u_{2} y_{2}+u_{3} y_{3} \Longleftrightarrow y=C_{1} e^{t}+C_{2} \cos (t)+C_{3} \sin (t)-\frac{1}{5} e^{-t}(\sin (t)+\cos (t))
$$

9. $y^{\prime \prime \prime}+y^{\prime}=\sec (t), \quad y(0)=2 ; y^{\prime}(0)=1 ; y^{\prime \prime}(0)=-2$. The solution by Variation of Parameters is given by

$$
y_{g}=u_{1} y_{1}+u_{2} y_{2}+u_{3} y_{3}, \quad \text { where }
$$

$y_{1}, y_{2}, y_{3}$ are found by solving the homogeneous eq. In turn, $y_{h}$ is given by solving the characteristic equation:

$$
r^{3}+r=0 \Longleftrightarrow r\left(r^{2}+1\right)=0 \Longrightarrow r_{1}=0 ; \quad r_{2,3}= \pm i
$$

The homogeneous solution is:

$$
y_{h}=C_{1}+C_{2} \cos (t)+C_{3} \sin (t)
$$

Let $y_{1}=1 ; \quad y_{2}=\cos (t) ; \quad y_{3}=\sin (t)$. Then, as previously calculated:

$$
W(1, \cos (t), \sin (t))=1 ; W_{1}=1 ; W_{2}=-\cos (t) ; W_{3}=-\sin (t)
$$

$u_{1}^{\prime}=\frac{W_{1} \cdot g}{W}=\sec (t) \Longrightarrow u_{1}=\ln (|\sec (t)+\tan (t)|)+C_{1}$
$u_{2}^{\prime}=\frac{W_{2} \cdot g}{W}=-\cos (t) \frac{1}{\cos (t)}=-1 \Longrightarrow u_{2}=-t+C_{2}$
$u_{3}^{\prime}=\frac{W_{3} \cdot g}{W}=-\tan (t) \Longrightarrow u_{3}=\ln (|\cos (t)|)+C_{3}$
Therefore
$y_{g}=u_{1} y_{1}+u_{2} y_{2}+u_{3} y_{3} \Longleftrightarrow y=C_{1}+C_{2} \cos (t)+C_{3} \sin (t)+\ln (|\sec (t)+\tan (t)|)-t \cos (t)+\ln (|\cos (t)|) \sin (t)$
Now, solving for $C_{1}, C_{2}, C_{3}$

$$
\left\{\begin{array}{l}
y(0)=2=C_{1}+C_{2} \Longrightarrow C_{1}=0 \\
y^{\prime}(0)=1=C_{3}+1-1 \Longrightarrow C_{3}=1 \\
y^{\prime \prime}(0)=-2=C_{2} \Longrightarrow C_{2}=2
\end{array}\right.
$$

The solution to the I.V.P is:

$$
y=2 \cos (t)+\sin (t)+\ln (|\sec (t)+\tan (t)|)-\operatorname{tcos}(t)+\ln (|\cos (t)|) \sin (t)
$$

