M343 Homework 6

Enrique Areyan

May 31, 2013

Section 3.5

2. $y^{\prime \prime}+2 y^{\prime}+5 y=3 \sin (2 t)$. The general solution is given by:
$y_{g}=y_{h}+y_{p}, \quad y_{p}$ is the solution to the associated homogeneous equation and y_{p} is the particular solution $\underline{y_{h}}$: Characteristic equation: $r^{2}+2 r+5=0 \Longleftrightarrow r=-1 \pm 2 i$. The solution in this case is:

$$
y_{h}=C_{1} e^{-t} \cos (2 t)+C_{2} e^{-t} \sin (2 t)
$$

$\underline{y_{p}}:$ Guess $y_{p}=A \cos (2 t)+B \sin (2 t)$. Then, $y_{p}^{\prime}=-2 A \sin (2 t)+2 B \cos (2 t)$ and $y_{p}^{\prime \prime}=-4 A \cos (2 t)-4 B \sin (2 t)$. $\overline{y_{p}}$ must satisfy the differential equation:

$$
\begin{aligned}
3 \sin (2 t) & =y_{p}^{\prime \prime}+2 y_{p}^{\prime}+5 y_{p} \\
& =-4 A \cos (2 t)-4 B \sin (2 t)+2(-2 A \sin (2 t)+2 B \cos (2 t))+5(A \cos (2 t)+B \sin (2 t)) \\
& =(A+4 B) \cos (2 t)+(-4 A+B) \sin (2 t)
\end{aligned}
$$

From which we can setup the following system of linear equations:

$$
\left\{\begin{array}{l}
A+4 B=0 \Longrightarrow A=-4 B \Longrightarrow A=-\frac{12}{17} \\
-4 B+B=3 \Longrightarrow 17 B=3 \Longrightarrow B=\frac{3}{17}
\end{array}\right.
$$

The general solution is:

$$
y=C_{1} e^{-t} \cos (2 t)+C_{2} e^{-t} \sin (2 t)-\frac{12}{17} \cos (2 t)+\frac{3}{17} \sin (2 t)
$$

3. $y^{\prime \prime}-2 y^{\prime}-3 y=-3 t e^{-t}$. The general solution is given by:
$y_{g}=y_{h}+y_{p}, \quad y_{p}$ is the solution to the associated homogeneous equation and y_{p} is the particular solution y_{h} : Characteristic equation: $r^{2}-2 r-3=0=0 \Longleftrightarrow r_{1}=3 ; r_{2}=-1$. The solution in this case is:

$$
y_{h}=C_{1} e^{3 t}+C_{2} e^{-t}
$$

$\underline{y_{p}}$: Guess $y_{p}=t(A t+B) e^{-t} \Longleftrightarrow y_{p}=e^{-t}\left(A t^{2}+B t\right)$. Then:

$$
\begin{gathered}
y_{p}^{\prime}=e^{-t}\left[-A t^{2}+(2 A-B) t+B\right] \\
y_{p}^{\prime \prime}=e^{-t}\left[A t^{2}+(-4 A+B) t+2 A-2 B\right]
\end{gathered}
$$

y_{p} must satisfy the differential equation:

$$
\begin{aligned}
-3 t e^{-t} & =y_{p}^{\prime \prime}-2 y_{p}^{\prime}-3 y_{p} \\
& =e^{-t}\left[A t^{2}+(-4 A+B) t+2 A-2 B\right]-2\left(e^{-t}\left[-A t^{2}+(2 A-B) t+B\right]\right)-3\left(e^{-t}\left(A t^{2}+B t\right)\right) \\
& =e^{-t}\left[t^{2}(A+2 A-3 A)+t(-4 A+B-4 A+2 B-3 B)+(2 A-2 B-2 B)\right] \\
& =e^{-t}[t(-8 A)+2 A-4 B]
\end{aligned}
$$

From which we can setup the following system of linear equations:

$$
\left\{\begin{array}{l}
-8 A=-3 \Longrightarrow A=\frac{3}{8} \\
2 A-4 B=0 \Longrightarrow A=2 B \Longrightarrow B=\frac{3}{16}
\end{array}\right.
$$

The general solution is:

$$
y=C_{1} e^{3 t}+C_{2} e^{-t}+\left(\frac{3}{8} t^{2}+\frac{3}{16} t\right) e^{-t}
$$

11. $y^{\prime \prime}+y^{\prime}+4 y=e^{t}-e^{-t}$. The general solution is given by:
$y_{g}=y_{h}+y_{p}, \quad y_{p}$ is the solution to the associated homogeneous equation and y_{p} is the particular solution $\underline{y_{h}}$: Characteristic equation: $r^{2}+r+4=0 \Longleftrightarrow r=\frac{-1 \pm \sqrt{15} i}{2}$. The solution in this case is:

$$
y_{h}=C_{1} e^{-t / 2} \cos \left(\frac{\sqrt{15}}{2} t\right)+C_{2} e^{-t / 2} \sin \left(\frac{\sqrt{15}}{2} t\right)
$$

$\underline{y_{p}}:$ Guess $y_{p}=A e^{t}+B e^{-t}$. Then, $y_{p}^{\prime}=A e^{t}-B e^{-t}$ and $y_{p}^{\prime \prime}=A e^{t}+B e^{-t}$.
$\overline{y_{p}}$ must satisfy the differential equation:

$$
\begin{aligned}
e^{t}-e^{-t} & =y_{p}^{\prime \prime}+y_{p}^{\prime}+4 y_{p} \\
& =A e^{t}+B e^{-t}+A e^{t}-B e^{-t}+4 A e^{t}+4 B e^{-t} \\
& =6 A e^{t}+4 B e^{-t}
\end{aligned}
$$

From which we can setup the following system of linear equations:

$$
\left\{\begin{array}{l}
6 A=1 \Longrightarrow A=\frac{1}{6} \\
4 B=-1 \Longrightarrow B=-\frac{1}{4}
\end{array}\right.
$$

The general solution is:

$$
y=C_{1} e^{-t / 2} \cos \left(\frac{\sqrt{15}}{2} t\right)+C_{2} e^{-t / 2} \sin \left(\frac{\sqrt{15}}{2} t\right)+\frac{e^{t}}{6}-\frac{e^{-t}}{4}
$$

13. $y^{\prime \prime}+y^{\prime}-2 y=2 t, \quad y(0)=0 ; y^{\prime}(0)=1$. The general solution is given by:
$y_{g}=y_{h}+y_{p}, \quad y_{p}$ is the solution to the associated homogeneous equation and y_{p} is the particular solution $\underline{y_{h}}$: Characteristic equation: $r^{2}+r-2=0=0 \Longleftrightarrow r_{1}=-2 ; r_{2}=1$. The solution in this case is:

$$
y_{h}=C_{1} e^{-2 t}+C_{2} e^{t}
$$

$\underline{y_{p}}$: Guess $y_{p}=A t+B$. Then, $y_{p}^{\prime}=A$ and $y_{p}^{\prime \prime}=0$.
y_{p} must satisfy the differential equation:

$$
\begin{aligned}
2 t & =y^{\prime \prime}+y^{\prime}-2 y \\
& =0+A-2(A t+B) \\
& =-2 A t+A-2 B
\end{aligned}
$$

From which we can setup the following system of linear equations:

$$
\left\{\begin{array}{l}
-2 A=2 \Longrightarrow A=-1 \\
A-2 B=0 \Longrightarrow-1-2 B=0 \Longrightarrow B=-\frac{1}{2}
\end{array}\right.
$$

The general solution is:

$$
y=C_{1} e^{-2 t}+C_{2} e^{t}-t-\frac{1}{2}
$$

Now, solve for C_{1}, C_{2} :

$$
\left\{\begin{array}{l}
y(0)=0=C_{1}+C_{2}-\frac{1}{2} \Longrightarrow C_{1}+C_{2}=\frac{1}{2} \Longrightarrow C_{1}=-\frac{1}{2} \\
y^{\prime}(0)=1=-2 C_{1}+C_{2}-1 \Longrightarrow-2 C_{1}+C_{2}=2 \Longrightarrow C_{2}=1
\end{array}\right.
$$

The solution to the I.V.P is:

$$
y=-\frac{1}{2} e^{-2 t}+e^{t}-t-\frac{1}{2}
$$

15. $y^{\prime \prime}-2 y^{\prime}+y=t e^{t}+4, \quad y(0)=1 ; y^{\prime}(0)=1$. The general solution is given by:
$y_{g}=y_{h}+y_{p}, \quad y_{p}$ is the solution to the associated homogeneous equation and y_{p} is the particular solution $\underline{y_{h}}$: Characteristic equation: $r^{2}-2 r+1=0=0 \Longleftrightarrow(r-1)^{2}=0$. The solution in this case is:

$$
y_{h}=C_{1} e^{t}+C_{2} t e^{t}
$$

$\underline{y_{p}}:$ Guess $y_{p}=t^{2}(A t+B) e^{t}+C \Longleftrightarrow y_{p}=\left(A t^{3}+B t^{2}\right) e^{t}+C$. Then:

$$
\begin{gathered}
y_{p}^{\prime}=e^{t}\left[A t^{3}+(3 A+B) t^{2}+2 B t\right] \\
y_{p}^{\prime \prime}=e^{t}\left[A t^{3}+(6 A+B) t^{2}+(6 A+4 B) t+2 B\right]
\end{gathered}
$$

y_{p} must satisfy the differential equation:

$$
\begin{aligned}
t e^{t}+4 & =y_{p}^{\prime \prime}-2 y_{p}^{\prime}+y_{p} \\
& =e^{t}\left[A t^{3}+(6 A+B) t^{2}+(6 A+4 B) t+2 B\right]-2\left(e^{t}\left[A t^{3}+(3 A+B) t^{2}+2 B t\right]\right)+\left(A t^{3}+B t^{2}\right) e^{t}+C \\
& =e^{t}[6 A t+2 B]+C
\end{aligned}
$$

From which we can setup the following system of linear equations:

$$
\left\{\begin{array}{l}
6 A=1 \Longrightarrow A=\frac{1}{6} \\
2 B=0 \Longrightarrow B=0 \\
C=4
\end{array}\right.
$$

The general solution is:

$$
y=C_{1} e^{t}+C_{2} t e^{t}+\frac{1}{6} t^{3} e^{t}+4
$$

Now, solve for C_{1}, C_{2} :

$$
\left\{\begin{array}{l}
y(0)=1=C_{1}+4 \Longrightarrow C_{1}=-3 \\
y^{\prime}(0)=1=-3+C_{2} \Longrightarrow C_{2}=4
\end{array}\right.
$$

The solution to the I.V.P is:

$$
y=-3 e^{t}+4 t e^{t}+\frac{1}{6} t^{3} e^{t}+4
$$

17. $y^{\prime \prime}+4 y=3 \sin (2 t), \quad y(0)=2 ; y^{\prime}(0)=-1$. The general solution is given by:
$y_{g}=y_{h}+y_{p}, \quad y_{p}$ is the solution to the associated homogeneous equation and y_{p} is the particular solution $\underline{y_{h}}$: Characteristic equation: $r^{2}+4=0=0 \Longleftrightarrow r= \pm 2 i$. The solution in this case is:

$$
y_{h}=C_{1} \cos (2 t)+C_{2} \sin (2 t)
$$

$\underline{y_{p}}:$ Guess $y_{p}=t[A \sin (2 t)+B \cos (2 t)]$. Then:

$$
\begin{aligned}
y_{p}^{\prime} & =[A \sin (2 t)+B \cos (2 t)]+t[2 A \cos (2 t)-2 B \sin (2 t)] \\
y_{p}^{\prime \prime} & =4 A \cos (2 t)-4 B \sin (2 t)-4 t A \sin (2 t)-4 B t \cos (2 t)
\end{aligned}
$$

y_{p} must satisfy the differential equation:

$$
\begin{aligned}
3 \sin (2 t) & =y_{p}^{\prime \prime}+4 y_{p} \\
& =4 A \cos (2 t)-4 B \sin (2 t)-4 t A \sin (2 t)-4 B t \cos (2 t)+4 t[A \sin (2 t)+B \cos (2 t)] \\
& =4 A \cos (2 t)-4 B \sin (2 t)-4 t A \sin (2 t)-4 B t \cos (2 t)+4 A t \sin (2 t)+4 B t \cos (2 t) \\
& =4 A \cos (2 t)-4 B \sin (2 t)
\end{aligned}
$$

From which we can setup the following system of linear equations:

$$
\left\{\begin{array}{l}
4 A=0 \Longrightarrow A=0 \\
-4 B=3 \Longrightarrow B=-\frac{3}{4}
\end{array}\right.
$$

The general solution is:

$$
y=C_{1} \cos (2 t)+C_{2} \sin (2 t)-\frac{3}{4} t \cos (2 t)
$$

Now, solve for C_{1}, C_{2} :

$$
\left\{\begin{array}{l}
y(0)=2=C_{1} \Longrightarrow C_{1}=2 \\
y^{\prime}(0)=-1=-3+C_{2} \Longrightarrow 2 C_{2}=\frac{3}{4}-1 \Longrightarrow C_{2}=-\frac{1}{8}
\end{array}\right.
$$

The solution to the I.V.P is:

$$
y=2 \cos (2 t)-\frac{1}{8} \sin (2 t)-\frac{3}{4} t \cos (2 t)
$$

18. $y^{\prime \prime}+2 y^{\prime}+5 y=4 e^{-t} \cos (2 t), \quad y(0)=1 ; y^{\prime}(0)=0$. The general solution is given by: $y_{g}=y_{h}+y_{p}, \quad y_{p}$ is the solution to the associated homogeneous equation and y_{p} is the particular solution $\underline{y_{h}}$: Characteristic equation: $r^{2}+2 r+5=0=0 \Longleftrightarrow r=-1 \pm 2 i$. The solution in this case is:

$$
y_{h}=C_{1} e^{-t} \cos (2 t)+C_{2} e^{-t} \sin (2 t)
$$

$\underline{y_{p}}$: Guess $y_{p}=t[A \sin (2 t)+B \cos (2 t)] e^{-t}$. Then:

$$
y_{p}^{\prime}=\left(e^{-t}-t e^{-t}\right)[A \sin (2 t)+B \cos (2 t)]+t e^{-t}[2 A \cos (2 t)-2 B \sin (2 t)]
$$

$$
y_{p}^{\prime \prime}=\left(-2 e^{-t}+t e^{-t}\right)[A \sin (2 t)+B \cos (2 t)]+2\left(e^{-t}-t e^{-t}\right)[2 A \cos (2 t)-2 B \sin (2 t)]+t e^{-t}[-4 A \sin (2 t)-4 B \cos (2 t)]
$$

y_{p} must satisfy the differential equation:

$$
4 e^{-t} \cos (2 t)=y_{p}^{\prime \prime}+2 y_{p}^{\prime}+5 y_{p}
$$

From which we can setup the following system of linear equations:

$$
\left\{\begin{array}{l}
-2 B t-4 B=0 \Longrightarrow B=0 \\
2 A t+4 A=4 \Longrightarrow A=1
\end{array}\right.
$$

The general solution is:

$$
y=C_{1} e^{-t} \cos (2 t)+C_{2} e^{-t} \sin (2 t)+t e^{-t} \sin (2 t)
$$

Now, solve for C_{1}, C_{2} :

$$
\left\{\begin{array}{l}
y(0)=1=C_{1} \Longrightarrow C_{1}=1 \\
y^{\prime}(0)=0=-1+2 C_{2} C_{2}=\frac{1}{2}
\end{array}\right.
$$

The solution to the I.V.P is:

$$
y=e^{-t} \cos (2 t)+\frac{1}{2} e^{-t} \sin (2 t)+t e^{-t} \sin (2 t)
$$

Section 3.6

4. $4 y^{\prime \prime}-4 y^{\prime}+y=16 e^{t / 2} \Longleftrightarrow y^{\prime \prime}-y^{\prime}+\frac{1}{4} y=4 e^{t / 2}$.

The solution to the homogeneous equation is: $r^{2}-r+\frac{1}{4}=0 \Longleftrightarrow\left(r-\frac{1}{2}\right)^{2}=0$

$$
y_{h}=C_{1} e^{t / 2}+C_{2} t e^{t / 2}
$$

Let $y_{1}=e^{t / 2}$ and $y_{2}=t e^{t / 2}$. On the one hand, using the method of variation of parameters:

$$
\begin{gathered}
W\left(y_{1}, y_{2}\right)=\left|\begin{array}{cc}
e^{t / 2} & t e^{t / 2} \\
\frac{e^{t / 2}}{2} & e^{t / 2}+\frac{t e^{t / 2}}{2}
\end{array}\right|=e^{t} \\
u_{1}^{\prime}=\frac{-y_{2} \cdot g}{W}=\frac{\left(-t e^{t / 2}\right)\left(4 e^{t / 2}\right)}{e^{t}}=-4 t \Longrightarrow u_{1}=-2 t^{2}+C_{1} \\
u_{2}^{\prime}=\frac{y_{1} \cdot g}{W}=\frac{\left(e^{t / 2}\right)\left(4 e^{t / 2}\right)}{e^{t}}=4 \Longrightarrow u_{2}=4 t+C_{2}
\end{gathered}
$$

So the solution is given by:

$$
y=u_{1} y_{1}+u_{2} y_{2}=\left(-2 t^{2}+C_{1}\right) e^{t / 2}+\left(4 t+C_{2}\right) e^{t / 2} t
$$

General solution:

$$
y=C_{1} e^{t / 2}+C_{2} t e^{t / 2}+2 t^{2} e^{t / 2}
$$

The particular solution, using the method of variation of parameters is $y_{p}=2 t^{2} e^{t / 2}$.
On the other hand, using the method of undetermined coefficients: guess the solution y_{p} :

$$
y_{p}=A t^{2} e^{t / 2} ; \Longrightarrow y_{p}^{\prime}=2 A t e^{t / 2}+\frac{A}{2} t^{2} e^{t / 2} ; \Longrightarrow y_{p}^{\prime \prime}=2 A e^{t / 2}+2 A t e^{t / 2}+\frac{A}{4} t^{2} e^{t / 2}
$$

The particular solution y_{p} must satisfy the equation:

$$
\begin{aligned}
4 e^{t / 2} & =y_{p}^{\prime \prime}-y_{p}^{\prime}+\frac{1}{4} y_{p} \\
& =2 A e^{t / 2}+2 A t e^{t / 2}+\frac{A}{4} t^{2} e^{t / 2}-2 A t e^{t / 2}-\frac{A}{2} t^{2} e^{t / 2}+\frac{A}{4} t^{2} e^{t / 2} \\
& =e^{t / 2}\left[2 A+2 A t+\frac{A}{4} t^{2}-2 A t-\frac{A}{2} t^{2}+\frac{A}{4} t^{2}\right] \\
& =e^{t / 2}\left[t^{2}\left(\frac{A}{4}+\frac{A}{4}-\frac{A}{2}\right)+t(2 A-2 A)+2 A\right]
\end{aligned}
$$

From which we can conclude that $2 A=4 \Longleftrightarrow A=2$. So the particular solution is $y_{p}=2 t^{2} e^{t / 2}$
The two methods agree.
5. $y^{\prime \prime}+y=\tan (t), \quad 0<t<\pi / 2$.

The solution to the homogeneous equation is: $r^{2}+1=0 \Longleftrightarrow r= \pm i$

$$
y_{h}=C_{1} \cos (t)+C_{2} \sin (t)
$$

Let $y_{1}=\cos (t)$ and $y_{2}=\sin (t)$. Using the method of variation of parameters:

$$
\begin{gathered}
W\left(y_{1}, y_{2}\right)=\left|\begin{array}{cc}
\cos (t) & \sin (t) \\
-\sin (t) & \cos (t)
\end{array}\right|=1 \\
u_{1}^{\prime}=\frac{-y_{2} \cdot g}{W}=\frac{-\sin (t) \tan (t)}{1}=\frac{-\sin ^{2}(t)}{\cos (t)} \Longrightarrow u_{1}=\int \frac{-\sin ^{2}(t)}{\cos (t)} d t=\int \cos (t)-\sec (t) d t=\sin (t)-\ln (\sec (t)+\tan (t))+C_{1} \\
u_{2}^{\prime}=\frac{y_{1} \cdot g}{W}=\frac{\cos (t) \tan (t)}{1}=\sin (t) \Longrightarrow u_{2}=-\cos (t)+C_{2}
\end{gathered}
$$

So the solution is given by:

$$
y=u_{1} y_{1}+u_{2} y_{2}=\left(\sin (t)-\ln (\sec (t)+\tan (t))+C_{1}\right) \cos (t)+\left(-\cos (t)+C_{2}\right) \sin (t)
$$

General solution:

$$
y=C_{1} \cos (t)+C_{2} \sin (t)-\ln (\sec (t)+\tan (t)) \cos (t)
$$

8. $y^{\prime \prime}+4 y=3 \csc (2 t), \quad 0<t<\pi / 2$.

The solution to the homogeneous equation is: $r^{2}+4=0 \Longleftrightarrow r= \pm 2 i$

$$
y_{h}=C_{1} \cos (2 t)+C_{2} \sin (2 t)
$$

Let $y_{1}=\cos (t)$ and $y_{2}=\sin (t)$. Using the method of variation of parameters:

$$
\begin{gathered}
W\left(y_{1}, y_{2}\right)=\left|\begin{array}{cc}
\cos (2 t) & \sin (2 t) \\
-2 \sin (2 t) & 2 \cos (2 t)
\end{array}\right|=2 \\
u_{1}^{\prime}=\frac{-y_{2} \cdot g}{W}=\frac{-\sin (2 t) 3 \csc (2 t)}{2}=-\frac{3}{2} \Longrightarrow u_{1}=-\frac{3}{2} t+C_{1} \\
u_{2}^{\prime}=\frac{y_{1} \cdot g}{W}=\frac{\cos (2 t) 3 \csc (2 t)}{2}=\frac{3}{2} \operatorname{cotan}(2 t) \Longrightarrow u_{2}=\frac{3}{4} \ln (\sin (2 t))+C_{2}
\end{gathered}
$$

So the solution is given by:

$$
y=u_{1} y_{1}+u_{2} y_{2}=\left(-\frac{3}{2} t+C_{1}\right) \cos (2 t)+\left(\frac{3}{4} \ln (\sin (2 t))+C_{2}\right) \sin (2 t)
$$

General solution:

$$
y=C_{1} \cos (2 t)+C_{2} \sin (2 t)-\frac{3}{2} t \cos (2 t)+\frac{3}{4} \ln (\sin (2 t)) \sin (2 t)
$$

10. $y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{t}}{1+t^{2}}$

The solution to the homogeneous equation is: $r^{2}-2 r+1=0 \Longleftrightarrow(r-1)^{2}=0$

$$
y_{h}=C_{1} e^{t}+C_{2} t e^{t}
$$

Let $y_{1}=e^{t}$ and $y_{2}=t e^{t}$. Using the method of variation of parameters:

$$
\begin{gathered}
W\left(y_{1}, y_{2}\right)=\left|\begin{array}{cc}
e^{t} & t e^{t} \\
e^{t} & e^{t}+t e^{t}
\end{array}\right|=e^{2} t+t e^{t}-t e^{t}=e^{2} t \\
u_{1}^{\prime}=\frac{-y_{2} \cdot g}{W}=\frac{-t e^{t} \frac{e^{t}}{1+t^{2}}}{e^{2} t}=-\frac{t}{1+t^{2}} \Longrightarrow u_{1}=-\frac{1}{2} \ln \left(1+t^{2}\right)+C_{1} \\
u_{2}^{\prime}=\frac{y_{1} \cdot g}{W}=\frac{e^{t} \frac{e^{t}}{1+t^{2}}}{e^{2 t}}=\frac{1}{1+t^{2}} \Longrightarrow u_{2}=\tan ^{-1}(t)+C_{2}
\end{gathered}
$$

So the solution is given by:

$$
y=u_{1} y_{1}+u_{2} y_{2}=\left(-\frac{1}{2} \ln \left(1+t^{2}\right)+C_{1}\right) e^{t}+\left(\tan ^{-1}(t)+C_{2}\right) t e^{t}
$$

General solution:

$$
y=C_{1} e^{t}+C_{2} t e^{t}-\frac{e^{t} \ln \left(1+t^{2}\right)}{2}+t e^{t} \tan ^{-1}(t)
$$

13. $t^{2} y^{\prime \prime}-2 y=3 t^{2}-1, \quad t>0 ; \quad y_{1}(t)=t^{2} ; \quad y_{2}(t)=t^{-1}$.

Before proceeding to solve this by variation of parameters, we need to write this equation in standard form:

$$
y^{\prime \prime}-\frac{2}{t^{2}} y=3-\frac{1}{t^{2}}
$$

y_{1} and y_{2} are solutions of the corresponding homogeneous equation since:

$$
\begin{gathered}
y_{1}^{\prime \prime}-\frac{2}{t^{2}} y_{1}=2-2=0 \\
y_{2}^{\prime \prime}-\frac{2}{t^{2}} y_{2}=\frac{2}{t^{3}}-\frac{2}{t^{3}}=0 \\
W\left(y_{1}, y_{2}\right)=\left|\begin{array}{cc}
t^{2} & t^{-1} \\
2 t & -t^{-2}
\end{array}\right|=-1-2=-3 \\
u_{1}^{\prime}=\frac{-y_{2} \cdot g}{W}=\frac{-t^{-1}\left(3-\frac{1}{t^{2}}\right)}{-3}=\frac{1}{t}-\frac{1}{3 t^{3}} \Longrightarrow u_{1}=\ln (t)+\frac{1}{6 t^{2}}+C_{1} \\
u_{2}^{\prime}=\frac{y_{1} \cdot g}{W}=\frac{t^{2}\left(3-\frac{1}{t^{2}}\right.}{-3}=-t^{2}+\frac{1}{3} \Longrightarrow u_{2}=-\frac{t^{3}}{3}+\frac{t}{3}+C_{2}
\end{gathered}
$$

So the solution is given by:

$$
y=u_{1} y_{1}+u_{2} y_{2}=\left(\ln (t)+\frac{1}{6 t^{2}}+C_{1}\right) t^{2}+\left(-\frac{t^{3}}{3}+\frac{t}{3}+C_{2}\right) t^{-1}
$$

Incorporating the quadratic term into the solution of the homogeneous equation:

$$
y=C_{1} t^{2}+C_{2} t^{-1}+t^{2} \ln (t)+\frac{1}{2}
$$

So the particular solution is

$$
y_{p}=t^{2} \ln (t)+\frac{1}{2}
$$

17. $x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=x^{2} \ln (x), \quad x>0 ; \quad y_{1}(x)=x^{2} ; \quad y_{2}(x)=x^{2} \ln (x)$.

Before proceeding to solve this by variation of parameters, we need to write this equation in standard form:

$$
y^{\prime \prime}-\frac{3}{x} y^{\prime}+\frac{4}{x^{2}} y=\ln (x)
$$

y_{1} and y_{2} are solutions of the corresponding homogeneous equation since:

$$
\begin{gathered}
y_{1}^{\prime \prime}-\frac{3}{x} y_{1}^{\prime}+\frac{4}{x^{2}} y_{1}=2-\frac{3}{x} 2 x+\frac{4}{x^{2}} x^{2}=6-6=0 \\
y_{2}^{\prime \prime}-\frac{3}{x} y_{2}^{\prime}+\frac{4}{x^{2}} y_{2}=2 \ln (x)+3-\frac{3}{x}(2 x \ln (x)+x)+\frac{4}{x^{2}} x^{2} \ln (x)=0 \\
W\left(y_{1}, y_{2}\right)=\left|\begin{array}{cc}
x^{2} & x^{2} \ln (x) \\
2 x & 2 x \ln (x)+x
\end{array}\right|=2 x^{3} \ln (x)+x^{3}-2 x^{3} \ln (x)=x^{3} \\
u_{1}^{\prime}=\frac{-y_{2} \cdot g}{W}=\frac{-x^{2} \ln ^{2}(x)}{x^{3}}=\frac{-\ln ^{2}(x)}{x} \Longrightarrow u_{1}=-\frac{\ln ^{3}(x)}{3}+C_{1} \\
u_{2}^{\prime}=\frac{y_{1} \cdot g}{W}=\frac{x^{2} \ln (x)}{x^{3}}=\frac{\ln (x)}{x} \Longrightarrow u_{2}=\frac{\ln ^{2}(x)}{2}+C_{2}
\end{gathered}
$$

So the solution is given by:

$$
y=u_{1} y_{1}+u_{2} y_{2}=\left(-\frac{\ln ^{3}(x)}{3}+C_{1}\right)\left(x^{2}\right)+\left(\frac{\ln ^{2}(x)}{2}+C_{2}\right) x^{2} \ln (x)=C_{1} x^{2}+C_{2} x^{2} \ln (x)+\frac{1}{6} x^{2} \ln ^{3}(x)
$$

So the particular solution is

$$
y_{p}=\frac{1}{6} x^{2} l n^{3}(x)
$$

Section 4.1

4. Consider the equation: $y^{\prime \prime \prime}+t y^{\prime \prime}+t^{2} y^{\prime}+t^{3} y=\ln (t)$. Since the functions: $t, t^{2}, t^{3}, \ln (t)$ are continuous everywhere when $t>0$, the interval in which the solution is certain to exists is $t>0$.
5. Let $f_{1} t(t)=2 t-3, \quad f_{2}(t)=t^{2}+1, \quad f_{3}(t)=2 t^{2}-t$. These functions are linearly dependent since:

$$
k_{1} f_{1}(t)+k_{2} f_{2}(t)+k_{3} f_{3}(t)=0
$$

Hold for every t, in particular $t=-1,0,1$

$$
\begin{cases}-5 k_{1}+2 k_{2}+3 k_{3} & =0 \Longrightarrow-14 k_{1}=0 \\ -3 k_{1}+k_{2} & =0 \Longrightarrow k_{2}=3 k_{1} \\ -k_{1}+2 k_{2}+k_{3} & =0 \Longrightarrow k_{3}=-5 k_{1}\end{cases}
$$

Hence, $k_{1}=k_{2}=k_{3}$
12. Consider the fourth O.D.E $y^{(4)}+y^{\prime \prime}=0$ and the functions $1, t, \cos (t), \sin (t)$. These are solutions since:

$$
\begin{aligned}
1^{(4)}+1^{\prime \prime} & =0+0=0 \\
t^{(4)}+t^{\prime \prime} & =0+0=0 \\
\cos (t)^{(4)}+\cos (t)^{\prime \prime} & =\cos (t)-\cos (t)=0 \\
\sin (t)^{(4)}+\sin (t)^{\prime \prime} & =\sin (t)-\sin (t)=0
\end{aligned}
$$

The Wronskian is:

$$
W(1, t, \cos (t), \sin (t))=\left|\begin{array}{cccc}
1 & t & \cos (t) & \sin (t) \\
0 & 1 & -\sin (t) & \cos (t) \\
0 & 0 & -\cos (t) & -\sin (t) \\
0 & 0 & \sin (t) & -\cos (t)
\end{array}\right|=\left|\begin{array}{ccc}
1 & -\sin (t) & \cos (t) \\
0 & -\cos (t) & -\sin (t) \\
0 & \sin (t) & -\cos (t)
\end{array}\right|=\sin ^{2}(t)+\cos ^{2}(t)=1
$$

15. Consider the third O.D.E $x y^{\prime \prime \prime}-y^{\prime \prime}=0$ and the functions $1, x, x^{3}$. These are solutions since:

$$
\begin{aligned}
x(1)^{\prime \prime \prime}-(1)^{\prime \prime} & =0-0=0 \\
x(x)^{\prime \prime \prime}-(x)^{\prime \prime} & =0-0=0 \\
x\left(x^{3}\right)^{\prime \prime \prime}-\left(x^{3}\right)^{\prime \prime} & =6 x-6 x=0
\end{aligned}
$$

The Wronskian is:

$$
W\left(1, x, x^{3}\right)=\left|\begin{array}{ccc}
1 & x & x^{3} \\
0 & 1 & 3 x^{2} \\
0 & 0 & 6 x
\end{array}\right|=\left|\begin{array}{cc}
1 & 3 x^{2} \\
0 & 6 x
\end{array}\right|=6 x
$$

