M343 Homework 5

Enrique Areyan
 May 24, 2013

Section 3.4

12. Consider the homogeneous, 2nd O.D.E with constant coefficients: $y^{\prime \prime}-6 y^{\prime}+9 y=0$ and initial conditions: $y(0)=0, y^{\prime}(0)=2$. The characteristic equation of this O.D.E is $(r-3)^{2}=0$, so we have two repeated real roots $r_{1}=r_{2}=3$. The solution is given by $y(t)=C_{1} y_{1}+C_{2} y_{2}$, where $y_{1}=e^{3 t}$ and $y_{2}=t e^{3 t}$ (obtained by reduction of order). So, the general solution is:

$$
y(t)=C_{1} e^{3 t}+C_{2} t e^{3 t}
$$

Solving for the constants C_{1}, C_{2} using the initial conditions we obtain:

$$
\left\{\begin{array}{l}
y(0)=0=C_{1} \cdot e^{0}+C_{2} \cdot 0 \cdot e^{0} \Longrightarrow C_{1}=0 \\
y^{\prime}(0)=2=C_{2}\left[e^{0}+3 \cdot 0 \cdot e^{0}\right] \Longrightarrow C_{2}=2
\end{array}\right.
$$

The solution for the the I.V.P is:

$$
y(t)=2 t e^{3 t}
$$

The graph for this solution is:

Plots:

(x from -1 to 1)
plot $2 x e^{\wedge}\{3 x\} \mid$ Computed by Wolfram|Alpha

Also, $\lim _{t \rightarrow \infty} y(t)=\infty$
14. Consider the homogeneous, 2nd O.D.E with constant coefficients: $y^{\prime \prime}+4 y^{\prime}+4 y=0$ and initial conditions: $y(-1)=2, y^{\prime}(-1)=1$. The characteristic equation of this O.D.E is $(r+2)^{2}=0$, so we have two repeated real roots $r_{1}=r_{2}=-2$. The solution is given by $y(t)=C_{1} y_{1}+C_{2} y_{2}$, where $y_{1}=e^{-2 t}$ and $y_{2}=t e^{-2 t}$ (obtained by reduction of order). So, the general solution is:

$$
y(t)=C_{1} e^{-2 t}+C_{2} t e^{-2 t}
$$

Solving for the constants C_{1}, C_{2} using the initial conditions we obtain:

$$
\left\{\begin{array}{l}
y(-1)=2=c_{1} e^{2}-C_{2} e^{2}=e^{2}\left(C_{1}-C_{2}\right) \Longrightarrow C_{1}-C_{2}=2 e^{-2} \\
y^{\prime}(-1)=1=-2 C_{1} e^{2}+C_{2}\left(e^{2}+2 e^{2}\right)=e^{2}\left(3 C_{2}-2 C_{1}\right) \Longrightarrow-2 C_{1}+3 C_{2}-e^{-2}
\end{array} \cdots(*)\right)
$$

Multiplying (*) by 2 and subtracting from ($* *$) we obtain $C_{2}=5 e^{-2}$ and $C_{1}=7 e^{-2}$. The solution for the the I.V.P is:

$$
y(t)=7 e^{-2(t+1)}+5 t e^{-2(t+1)}
$$

The graph for this solution is:

Plots :

(t from -2.5 to 0.5)
plot $7 e^{\wedge}\{-2(t+1)\}+5$ te^\{-2(t+1)|Computed by Wolfram|Alpha

Also, $\lim _{t \rightarrow \infty} y(t)=0$
16. Consider the homogeneous, 2nd O.D.E with constant coefficients: $y^{\prime \prime}-y^{\prime}+\frac{1}{4} y=0$ and initial conditions: $y(0)=2, y^{\prime}(0)=b$. The characteristic equation of this O.D.E is $\left(r-\frac{1}{2}\right)^{2}=0$, so we have two repeated real roots $r_{1}=r_{2}=\frac{1}{2}$. The solution is given by $y(t)=C_{1} y_{1}+C_{2} y_{2}$, where $y_{1}=e^{t / 2}$ and $y_{2}=t e^{t / 2}$ (obtained by reduction of order). So, the general solution is:

$$
y(t)=C_{1} e^{t / 2}+C_{2} t e^{t / 2}
$$

Solving for the constants C_{1}, C_{2} using the initial conditions we obtain:

$$
\left\{\begin{array}{l}
y(0)=2=C_{1}+C_{2} \cdot 0 \Longrightarrow C_{1}=2 \\
y^{\prime}(0)=b=C_{1}\left(\frac{e^{0}}{2}\right)+C_{2}\left(e^{0}+0\right)=\frac{C_{1}}{2}+C_{2}=1+C_{2} \Longrightarrow C_{2}=b-1
\end{array}\right.
$$

The solution for the the I.V.P is:

$$
y(t)=e^{t / 2}(2+(b-1) t)
$$

If $b-1 \geq 0 \Longleftrightarrow b \geq 1$, then $\lim _{t \rightarrow \infty} y(t)=\infty$.
Otherwise, if $b-1 \leq 0 \Longleftrightarrow b<1$, then $\lim _{t \rightarrow \infty} y(t)=-\infty$
Therefore, the critical value for b is $b=1$
25. Consider the homogeneous, 2nd O.D.E $t^{2} y^{\prime \prime}+3 t y^{\prime}+y=0, \quad t>0, \quad y_{1}(t)=t^{-1}$. Let us find y_{2} by reduction of order: Suppose that the second solution y_{2} is of the form:

$$
y_{2}(t)=V(t) \cdot y_{1}(t) \Longrightarrow y_{2}(t)=\frac{V(t)}{t}
$$

Then

$$
y_{2}^{\prime}(t)=\frac{V^{\prime}(t)}{t}-\frac{V(t)}{t^{2}} \quad \text { and } \quad y_{2}^{\prime \prime}(t)=\frac{V^{\prime \prime}(t)}{t}-\frac{2 V^{\prime}(t)}{t^{2}}+\frac{2 V(t)}{t^{3}}
$$

Since y_{2} is a solution, it has to satisfy the O.D.E:

$$
\begin{aligned}
0 & =t^{2} y_{2}^{\prime \prime}+3 t y_{2}^{\prime}+y_{2} \\
& =t^{2}\left(\frac{V^{\prime \prime}(t)}{t}-\frac{2 V^{\prime}(t)}{t^{2}}+\frac{2 V(t)}{t^{3}}\right)+3 t\left(\frac{V^{\prime}(t)}{t}-\frac{V(t)}{t^{2}}\right)+\left(\frac{V(t)}{t}\right) \\
& =t V^{\prime \prime}(t)-2 V^{\prime}(t)+\frac{2 V(t)}{t}+3 V^{\prime}(t)-\frac{3 V(t)}{t}+\frac{V(t)}{t} \\
& =t V^{\prime \prime}(t)+V^{\prime}(t)(3-2)+V(t)\left(\frac{2}{t}-\frac{3}{t}+\frac{1}{t}\right) \\
& =t V^{\prime \prime}(t)+V^{\prime}(t)
\end{aligned}
$$

Hence, we have that $t V^{\prime \prime}(t)+V^{\prime}(t)=0$. If we make the substitution: $W=V^{\prime} \Longrightarrow W^{\prime}=V^{\prime \prime}$, we get:

$$
t W^{\prime}+W=0 \Longleftrightarrow \frac{d}{d t}[t \cdot W]=0 \Longleftrightarrow t \cdot W=C \Longleftrightarrow W=\frac{C}{t}
$$

Changing the substitution boac to V:

$$
W=V^{\prime}=\frac{C}{t} \Longrightarrow V=C \ln (t)
$$

Hence, our second solution is:

$$
y_{2}(t)=\frac{\ln (t)}{t}
$$

26. Consider the homogeneous, 2nd O.D.E $t^{2} y^{\prime \prime}-t(t+2) y^{\prime}+(t+2) y=0, \quad t>0, \quad y_{1}(t)=t$. Let us find y_{2} by reduction of order: Suppose that the second solution y_{2} is of the form:

$$
y_{2}(t)=V(t) \cdot y_{1}(t) \Longrightarrow y_{2}(t)=V(t) \cdot t
$$

Then

$$
y_{2}^{\prime}(t)=V^{\prime}(t) t+V(t) \quad \text { and } \quad y_{2}^{\prime \prime}(t)=V^{\prime \prime}(t) t+2 V^{\prime}(t)
$$

Since y_{2} is a solution, it has to satisfy the O.D.E:

$$
\begin{aligned}
0 & =t^{2} y_{2}^{\prime \prime}-t(t+2) y_{2}^{\prime}+(t+2) y_{2} \\
& =t^{2}\left(V^{\prime \prime} t+2 V^{\prime}\right)-t(t+2)\left(V^{\prime} t+V\right)+(t+2)(V t) \\
& =t^{3} V^{\prime \prime}+V^{\prime}\left(2 t^{2}-t^{2}(t+2)\right)+V(-t(t+2)+t(t+2)) \\
& =t^{3} V^{\prime \prime}+V^{\prime}\left(2 t^{2}-t^{3}-2 t^{2}\right) \\
& =t^{3} V^{\prime \prime}-t^{3} V^{\prime} \\
& =V^{\prime \prime}-V^{\prime}
\end{aligned}
$$

Hence, we have that $V^{\prime \prime}-V^{\prime}=0$. If we make the substitution: $W=V^{\prime} \Longrightarrow W^{\prime}=V^{\prime \prime}$, we get:

$$
W^{\prime}-W=0 \Longleftrightarrow W^{\prime}=W \Longleftrightarrow W=e^{t}
$$

Changing the substitution back to V :

$$
W=V^{\prime}=e^{t} \Longrightarrow V=e^{t}
$$

Hence, our second solution is:

$$
y_{2}(t)=t \cdot e^{t}
$$

28. Consider the homogeneous, 2nd O.D.E $(x-1) y^{\prime \prime}-x y^{\prime}+y=0 \quad x>1, y_{1}(t)=e^{x}$. Let us find y_{2} by reduction of order: Suppose that the second solution y_{2} is of the form:

$$
y_{2}(x)=V(x) \cdot y_{1}(x) \Longrightarrow y_{2}(x)=V(x) \cdot e^{x}
$$

Then

$$
y_{2}^{\prime}(t)=e^{x}\left(V^{\prime}+V\right) \quad \text { and } \quad y_{2}^{\prime \prime}(t)=e^{x}\left(V^{\prime \prime}+2 V^{\prime}+V\right)
$$

Since y_{2} is a solution, it has to satisfy the O.D.E:

$$
\begin{aligned}
0 & =(x-1) y^{\prime \prime}-x y^{\prime}+y \\
& =(x-1)\left(e^{x}\left(V^{\prime \prime}+2 V^{\prime}+V\right)\right)-x\left(e^{x}\left(V^{\prime}+V\right)\right)+\left(V e^{x}\right) \\
& =(x-1)\left(V^{\prime \prime} e^{x}+2 V^{\prime} e^{x}+V e^{x}\right)-x\left(V^{\prime} e^{x}+V e^{x}\right)+V e^{x} \\
& =x e^{x} V^{\prime \prime}+2 x e^{x} V^{\prime}+x e^{x} V-V^{\prime \prime} e^{x}-2 V^{\prime} e^{x}-V e^{x}-x e^{x} V^{\prime}-x V e^{x}+V e^{x} \\
& =V^{\prime \prime}\left(x e^{x}-e^{x}\right)+V^{\prime}\left(2 x e^{x}-2 e^{x}-x e^{x}\right)+V\left(x e^{x}-e^{x}-x e^{x}+e^{x}\right) \\
& =\left(e^{x}(x-1)\right) V^{\prime \prime}+\left(e^{x}(x-2)\right) V^{\prime} \\
& =(x-1) V^{\prime \prime}+(x-2) V^{\prime}
\end{aligned}
$$

Hence, we have that $(x-1) V^{\prime \prime}+(x-2) V^{\prime}=0$. If we make the substitution: $W=V^{\prime} \Longrightarrow W^{\prime}=V^{\prime \prime}$, we get:

$$
(x-1) W^{\prime}+(x-2) W=0 \Longleftrightarrow \int \frac{d W}{W}=\int \frac{2-x}{x-1} d x \Longrightarrow \ln (W)=\ln (x-1)-x \Longleftrightarrow W=(x-1) e^{-x}
$$

Changing the substitution back to V:

$$
W=V^{\prime}=(x-1) e^{-x} \Longrightarrow V=e^{-x} x
$$

Hence, our second solution is:

$$
y_{2}(x)=e^{-x} x \cdot e^{x} \Longleftrightarrow y_{2}(x)=x
$$

