M343 Homework 4
 Enrique Areyan
 May 22, 2013

Section 3.2

3. Consider the pair of functions: $e^{-2 t}, t e^{-2 t}$. Then,

$$
\begin{aligned}
W(t) & =e^{-2 t}\left(t e^{-2 t}\right)^{\prime}-t e^{-2 t}\left(e^{-2 t}\right)^{\prime} \\
& =e^{-2 t}\left(e^{-2 t}-2 t e^{-2 t}\right)+2 t e^{-4 t} \\
& =e^{-4 t}-2 t e^{-4 t}+2 t e^{-4 t} \\
& =e^{-4 t}
\end{aligned}
$$

Hence, the Wronskian of the given pair of functions is $W(t)=e^{-4 t}$.
6. Consider the pair of functions: $\cos ^{2}(\theta), 1+\cos (2 \theta)$. Note that, $1+\cos (2 \theta)=2 \cos ^{2}(\theta)$ Then,

$$
\begin{aligned}
W(\theta) & =\left(\cos ^{2}(\theta)\right)\left(2 \cos ^{2}(\theta)\right)^{\prime}-\left(\cos ^{2}(\theta)^{\prime}\left(2 \cos ^{2}(\theta)\right)\right. \\
& =\left(\cos ^{2}(\theta)\right) 2(-2 \sin (\theta) \cos (\theta))-(-2 \sin (\theta) \cos (\theta))\left(2 \cos ^{2}(\theta)\right) \\
& =-4 \sin (\theta) \cos ^{3}(\theta)+4 \sin (\theta) \cos ^{3}(\theta) \\
& =0
\end{aligned}
$$

Hence, the Wronskian of the given pair of functions is $W(\theta)=0$.
10. $y^{\prime \prime}+(\cos (t)) y^{\prime}+3(\ln (|t|)) y=0, \quad y(2)=3, \quad y^{\prime}(2)=1 . \quad$ This equation is already in standard form.

Applying Theorem 3.2.1 (E.U.T), we analyze continuity of the functions $p(t)=\cos (t)$ (continuos everywhere), $q(t)=3(\ln (|t|))$ (continuos everywhere except at $t=0$) and $g(t)=0$ (continuos everywhere).

Hence, these functions are continuous when either $-\infty<t<0$ or $0<t<\infty$. But, $t_{0}=2 \in(0, \infty)$ and hence, there exists a unique solution in this interval.
11. $(x-3) y^{\prime \prime}+x y^{\prime}+(\ln (|x|)) y=0, \quad y(1)=0, \quad y^{\prime}(1)=1 . \quad$ This equation is not in standard form. Multiplying by $\frac{1}{x-3}$ we can convert this equation to standard form: $y^{\prime \prime}+\frac{x}{x-3}+\frac{\ln (|x|)}{x-3}=0$
Applying Theorem 3.2.1 (E.U.T), we analyze continuity of the functions $p(t)=\frac{x}{x-3}$ (continuos everywhere except at $x=3), q(t)=\frac{\ln (|x|)}{x-3}($ continuos everywhere except at $t=0$ and $t=3)$ and $g(t)=0$ (continuos everywhere).

Hence, these functions are continuous when either $-\infty<t<0$ or $0<t<3$ or $3<t<\infty$. But, $t_{0}=1 \in(0,3)$ and hence, there exists a unique solution in this interval.
13. Consider the following linear, homogeneous, 2nd O.D.E: $\quad t^{2} y^{\prime \prime}-2 y=0, \quad t>0$.

Claim: $y_{1}(t)=t^{2}$ and $y_{2}(t)=t^{-1}$ are solutions to the O.D.E. Proof: They each have to satisfy the equation.
Note that $y_{1}^{\prime \prime}=2$ and $y_{2}^{\prime \prime}=\frac{2}{t^{3}}$
For y_{1} we have: $t^{2} y_{1}^{\prime \prime}-2 y_{1}=t^{2}(2)-2 t^{2}=0$. So, y_{1} is a solution.
For y_{2} we have: $t^{2} y_{2}^{\prime \prime}-2 y_{2}=\frac{2}{t}-\frac{2}{t}=0$. So, y_{2} is a solution.
Claim: $y=c_{1} t^{2}+c_{2} t^{-1}$ is also a solution.
Proof: $t^{2} y^{\prime \prime}-2 y=t^{2}\left(2 c_{1}+\frac{2 c_{2}}{t^{3}}\right)-2\left(c_{1} t^{2}+c_{2} t^{-1}\right)=2 c_{1} t^{2}+\frac{2 c_{2}}{t}-2 c_{1} t^{2}-\frac{2 c_{2}}{t}=0$, so y is also a solution for any c_{1}, c_{2}.
17. Let $W(t)=3 e^{4 t}$ and $f(t)=e^{2 t}$. We want to find $g(t)$. Applying the definition of the Wronskian:

$$
\begin{aligned}
W(t) & =f \cdot g^{\prime}-f^{\prime} \cdot g \\
& =e^{2 t} \cdot g^{\prime}-2 e^{2 t} \cdot g \\
3 e^{4 t} & =e^{2 t} \cdot g^{\prime}-2 e^{2 t} \cdot g \\
3 e^{4 t} & =e^{2 t}\left(g^{\prime}-2 g\right) \Longleftrightarrow \\
3 e^{2 t} & =g^{\prime}-2 g
\end{aligned}
$$

This final equation is a linear, 1st O.D.E. We solve this by integrating factor $\mu(t)=e^{\int-2}=e^{-2 t}$.:

$$
\frac{d}{d t}\left[e^{-2 t} g\right]=3 e^{2 t} \cdot e^{-2 t} \Longrightarrow \text { integrating both sides } e^{-2 t} g=\int 3 d t=3 t+C
$$

So, the function g is given by $g(t)=3 t e^{2 t}+C e^{2 t}$
22.

$$
y^{\prime \prime}+y^{\prime}-2 y=0, \quad t_{0}=0
$$

The characteristic equation is $r^{2}+r-2=0 \Longleftrightarrow(r-1)(r+2)=0$. The solution is given by:

$$
y(t)=C_{1} e^{t}+C_{2} e^{-2 t}
$$

By Theorem 3.2.5, let y_{1} be the solution that satisfies $y_{1}\left(t_{0}\right)=1, y_{1}^{\prime}\left(t_{0}\right)=0$. Then:

$$
\begin{cases}y_{1}\left(t_{0}\right)=y_{1}(0)=1=C_{1}+C_{2} & \Longrightarrow 1=3 C_{2} \Longrightarrow C_{2}=\frac{1}{3} \\ y_{1}^{\prime}\left(t_{0}\right)=y_{1}^{\prime}(0)=0=C_{1}-2 C_{2} & \Longrightarrow C_{1}=2 C_{2} \Longrightarrow C_{1}=\frac{2}{3}\end{cases}
$$

The particular solution y_{1} is given by $y_{1}(t)=\frac{2}{3} e^{t}+\frac{1}{3} e^{-2 t}$
Likewise, by Theorem 3.2.5, let y_{2} be the solution that satisfies $y_{2}\left(t_{0}\right)=1, y_{2}^{\prime}\left(t_{0}\right)=0$. Then:

$$
\begin{cases}y_{2}\left(t_{0}\right)=y_{2}(0)=0=C_{1}+C_{2} & \Longrightarrow C_{1}=-C_{2} \Longrightarrow C_{1}=\frac{1}{3} \\ y_{2}^{\prime}\left(t_{0}\right)=y_{2}^{\prime}(0)=1=C_{1}-2 C_{2} & \Longrightarrow 1=-3 C_{2} \Longrightarrow C_{2}=-\frac{1}{3}\end{cases}
$$

The particular solution y_{2} is given by $y_{2}(t)=\frac{1}{3} e^{t}-\frac{1}{3} e^{-2 t}$
By Theorem 3.2.5, y_{1} and y_{2} form a fundamental set of solutions.
23.

$$
y^{\prime \prime}+4 y^{\prime}+3 y=0, \quad t_{0}=1
$$

The characteristic equation is $r^{2}+4 r+3=0 \Longleftrightarrow(r+1)(r+3)=0$. The solution is given by:

$$
y(t)=C_{1} e^{-t}+C_{2} e^{-3 t}
$$

By Theorem 3.2.5, let y_{1} be the solution that satisfies $y_{1}\left(t_{0}\right)=1, \quad y_{1}^{\prime}\left(t_{0}\right)=0$. Then:

$$
\begin{cases}y_{1}\left(t_{0}\right)=y_{1}(1)=1=C_{1} e^{-1}+C_{2} e^{-3} & \Longrightarrow-\frac{3}{2}=-C_{1} e^{-1} \Longrightarrow C_{1}=\frac{3 e}{2} \\ y_{1}^{\prime}\left(t_{0}\right)=y_{1}^{\prime}(1)=0=-C_{1} e^{-1}-3 C_{2} e^{-3} & \Longrightarrow 1=-2 C_{2} e^{-3} \Longrightarrow C_{2}=-\frac{e^{3}}{2}\end{cases}
$$

The particular solution y_{1} is given by $y_{1}(t)=\frac{3 e}{2} e^{-t}-\frac{e^{3}}{2} e^{-3 t} \Longleftrightarrow y_{1}(t)=\frac{3 e^{1-t}}{2}-\frac{e^{3-3 t}}{2}$
Likewise, by Theorem 3.2.5, let y_{2} be the solution that satisfies $y_{2}\left(t_{0}\right)=1, y_{2}^{\prime}\left(t_{0}\right)=0$. Then:

$$
\begin{cases}y_{2}\left(t_{0}\right)=y_{2}(1)=0=C_{1} e^{-1}+C_{2} e^{-3} & \Longrightarrow C_{1} e^{-1}=\frac{1}{2} \Longrightarrow C_{1}=\frac{e}{2} \\ y_{2}^{\prime}\left(t_{0}\right)=y_{2}^{\prime}(1)=1=-C_{1} e^{-1}-3 C_{2} e^{-3} & \Longrightarrow 1=-2 C_{2} e^{-3} \Longrightarrow C_{2}=-\frac{e^{3}}{2}\end{cases}
$$

The particular solution y_{2} is given by $y_{2}(t)=\frac{e^{1-t}}{2}-\frac{e^{3-3 t}}{2}$
By Theorem 3.2.5, y_{1} and y_{2} form a fundamental set of solutions.

Section 3.3

9. Consider the following homogeneous, linear, 2nd O.D.E with constant coefficients:

$$
y^{\prime \prime}+2 y^{\prime}-8 y=0
$$

The characteristic equation is $r^{2}+2 r-8=0 \Longleftrightarrow(r+4)(r-2)=0$. Hence, the general solution is given by:

$$
y(t)=C_{1} e^{-4 t}+C_{2} e^{2 t}
$$

16. Consider the following homogeneous, linear, 2nd O.D.E with constant coefficients:

$$
y^{\prime \prime}+4 y^{\prime}+6.25 y=0
$$

The characteristic equation is $r^{2}+4 r-6.25=0$. Solving via quadratic formula: $r=\frac{-4 \pm \sqrt{16-25}}{2 \cdot 1}=-2 \pm \frac{3}{2} i$. We have two complex roots: $r_{1}=-2+\frac{3}{2} i$ and $r_{2}=-2+\frac{3}{2} i$. The solutions are:

$$
\begin{gathered}
y_{1}(t)=e^{\left(-2+\frac{3}{2} i\right) t}=e^{-2 t}\left[\cos \left(\frac{3}{2} t\right)+i \sin \left(\frac{3}{2} t\right)\right] \\
y_{2}(t)=e^{\left(-2-\frac{3}{2} i\right) t}=e^{-2 t}\left[\cos \left(-\frac{3}{2} t\right)+i \sin \left(-\frac{3}{2} t\right)\right]=\text { trig. identities }=e^{-2 t}\left[\cos \left(\frac{3}{2} t\right)-i \sin \left(\frac{3}{2} t\right)\right]
\end{gathered}
$$

To express the solution in terms of real-valued functions, we use the fact that the solutions are closed under addition:

$$
\begin{aligned}
& y_{1}(t)+y_{2}(t)=2 e^{-2 t} \cos \left(\frac{3}{2} t\right) \\
& y_{1}(t)-y_{2}(t)=2 i e^{-2 t} \sin \left(\frac{3}{2} t\right)
\end{aligned}
$$

We can drop the constants 2 and $2 i$ to obtain the general solution:

$$
y(t)=C_{1} e^{-2 t} \cos \left(\frac{3}{2} t\right)+C_{2} e^{-2 t} \sin \left(\frac{3}{2} t\right)
$$

19. Consider the I.V.P: $y^{\prime \prime}-2 y^{\prime}+5 y=0, \quad y(\pi / 2)=0, \quad y^{\prime}(\pi / 2)=2$. This is a homogeneous, linear, 2nd O.D.E with constant coefficients. To solve it we find the characteristic equation:

$$
r^{2}-2 r+5=0 \Longleftrightarrow r=\frac{2 \pm \sqrt{4-20}}{2 \cdot 1}=\frac{2 \pm 4 i}{2}=1 \pm 2 i
$$

We have two complex roots: $r_{1}=1+2 i$ and $r_{2}=1-2 i$. The solutions are:

$$
\begin{gathered}
y_{1}(t)=e^{(1+2 i) t}=e^{t}[\cos (2 t)+i \sin (2 t)] \\
y_{2}(t)=e^{(1-2 i) t}=e^{t}[\cos (-2 t)+i \sin (-2 t)]=e^{t}[\cos (2 t)-i \sin (2 t)]
\end{gathered}
$$

To express the solution in terms of real-valued functions, we use the fact that the solutions are closed under addition:

$$
\begin{gathered}
y_{1}(t)+y_{2}(t)=2 e^{t} \cos (2 t) \\
y_{1}(t)-y_{2}(t)=2 i e^{t} \sin (2 t)
\end{gathered}
$$

We can drop the constants 2 and $2 i$ to obtain the general solution:

$$
y(t)=C_{1} e^{t} \cos (2 t)+C_{2} e^{t} \sin (2 t)
$$

Finally, we solve for the initial conditions:

$$
\left\{\begin{array}{l}
y(\pi / 2)=0=C_{1} e^{\pi / 2} \cos (\pi)+C_{2} e^{\pi / 2} \sin (\pi)=-e^{\pi / 2} C_{1} \Longrightarrow C_{1}=0 \\
y^{\prime}(\pi / 2)=2=\left(\text { we already know that } C_{1}=0 \ldots\right)=C_{2}\left[e^{\pi / 2} \sin (\pi)+e^{\pi / 2} \cos (\pi) \frac{\pi}{2}=-2 C_{2} e^{\pi / 2} C_{2} \Longrightarrow \frac{-1}{e^{\pi / 2}}\right.
\end{array}\right.
$$

So, the particular solution for the I.V.P:

$$
y(t)=\frac{-1}{e^{\pi / 2}} e^{t} \sin (2 t) \Longleftrightarrow y(t)=-e^{t-\pi / 2} \sin (2 t)
$$

Graph of the solution:

Plots:

plot - $\mathrm{e}^{\wedge}(\mathrm{x}-(\mathrm{pi} / 2)) * \sin (2 \mathrm{x}) \mid$ Computed by Wolfram|Alpha

Also, $\lim _{t \rightarrow \infty} y(t)=-\infty$
21. Consider the I.V.P: $y^{\prime \prime}+y^{\prime}+1.25 y=0, \quad y(0)=3, \quad y^{\prime}(0)=1$. This is a homogeneous, linear, 2nd O.D.E with constant coefficients. To solve it we find the characteristic equation:

$$
r^{2}+r+1.25=0 \Longleftrightarrow r=\frac{-1 \pm \sqrt{1-5}}{2 \cdot 1}=\frac{-1 \pm 2 i}{2}=-\frac{1}{2} \pm i
$$

We have two complex roots: $r_{1}=-\frac{1}{2}+i$ and $r_{2}=-\frac{1}{2}-i$. The solutions are:

$$
\begin{gathered}
y_{1}(t)=e^{\left(i-\frac{1}{2}\right) t}=e^{-\frac{t}{2}}[\cos (t)+i \sin (t)] \\
y_{2}(t)=e^{\left(-i-\frac{1}{2}\right) t}=e^{-\frac{t}{2}}[\cos (-t)+i \sin (-t)]=e^{-\frac{t}{2}}[\cos (t)-i \sin (t)]
\end{gathered}
$$

To express the solution in terms of real-valued functions, we use the fact that the solutions are closed under addition:

$$
\begin{aligned}
y_{1}(t)+y_{2}(t) & =2 e^{-\frac{t}{2}} \cos (t) \\
y_{1}(t)-y_{2}(t) & =2 i e^{-\frac{t}{2}} \sin (t)
\end{aligned}
$$

We can drop the constants 2 and $2 i$ to obtain the general solution:

$$
y(t)=C_{1} e^{-\frac{t}{2}} \cos (t)+C_{2} e^{-\frac{t}{2}} \sin (t)
$$

Finally, we solve for the initial conditions:

$$
\left\{\begin{array}{l}
y(0)=3=C_{1} e^{0} \cos (0)+C_{2} e^{0} \sin (0) \Longrightarrow C_{1}=3 \\
y^{\prime}(0)=1=C_{1}\left[-\frac{1}{2} e^{0} \cos (0)-e^{0} \sin (0)\right]+C_{2}\left[-\frac{1}{2} e^{0} \sin (0)+e^{0} \cos (0)\right]=-\frac{1}{2} C_{1}+C_{2} \Longrightarrow C_{2}=\frac{5}{2}
\end{array}\right.
$$

So, the particular solution for the I.V.P:

$$
y(t)=3 e^{-\frac{t}{2}} \cos (t)+\frac{5}{2} e^{-\frac{t}{2}} \sin (t)
$$

Graph of the solution:

Plots :

plot $3 * \mathrm{e}^{\wedge}(-\mathrm{x} / 2) * \cos (\mathrm{x})+(5 / 2) * \mathrm{e}^{\wedge}(-\mathrm{x} / 2) * \sin (\mathrm{x})$
Computed by Wolfram|Alpha

Also, $\lim _{t \rightarrow \infty} y(t)=0$

