M343 Homework 2

Enrique Areyan
 May 15, 2013

Section 2.3

1. Let $Q(t)=$ the amount of dye in grams in the tank at time t. (Time in minutes). We want to find:

$$
\frac{d Q}{d t}=\text { rate of dye into the tank }- \text { rate of dye out of the tank }
$$

Since we want to clean the tank, the rate of dye into the tank is zero. The rate of water in and out of the tank is the same: $2 L / \mathrm{min}$. The tank initially contains $200 L$ of a dye solution with a concentration of $1 \mathrm{~g} / \mathrm{L}$. The concentration of dye in the tank is $q(t)=Q(t) / V(t)$, but since the water flows in and out of the tank at the same rate we have that $V(t)=200$ and hence, $q(t)=Q(t) / 200$. A model for this situation is the following:

$$
\left\{\begin{array}{l}
\frac{d Q}{d t}=0 \mathrm{~g} / \mathrm{L} \cdot 2 \mathrm{~L} / \min -\frac{Q(t)}{200} \mathrm{~g} / \mathrm{L} \cdot 2 \mathrm{~L} / \min =-\frac{Q(t)}{100} \mathrm{~g} / \mathrm{min} \\
Q(0)=200 \mathrm{~L} \cdot 1 \mathrm{~g} / \mathrm{L}=200 \mathrm{~g}
\end{array}\right.
$$

This model is an I.V.P consisting of a 1st order, linear differential equation solvable by separating variables. To solve it we proceed as follow:

$$
\begin{array}{rlr}
\frac{d Q}{d t} & =-\frac{Q(t)}{100} & \text { Tank Model } \\
\frac{d Q}{Q} & =-\frac{d t}{100} & \text { Separating the equation } \\
\int \frac{d Q}{Q} & =\int-\frac{d t}{100} & \text { Integrating both sides } \\
\ln (|Q|) & =-\frac{t}{100}+C & \text { Simple integration } \\
Q & =C e^{-t / 100} & \text { Exponentiating each side }
\end{array}
$$

Using our initial condition: $Q(0)=200=C e^{0} \Longrightarrow C=200$. So our model for this particular situation is

$$
Q(t)=200 e^{-t / 100}
$$

We are interested in finding the time t_{0} such that the concentration of dye in the tank reaches 1% of its original value, i.e., $Q\left(t_{0}\right)=1 \% \cdot 200=2$. Using our model:

$$
Q\left(t_{0}\right)=2=200 e^{-t_{0} / 100} \Longleftrightarrow \frac{1}{100}=e^{-t_{0} / 100} \Longleftrightarrow \ln \left(\frac{1}{100}\right)=-t_{0} / 100 \Longleftrightarrow t_{0}=100 \ln (100) \min
$$

2. Let $Q(t)=$ amount of salt in grams in the tank at time t. (Time in minutes). We want to find:

$$
\frac{d Q}{d t}=\text { rate of salt into the tank }- \text { rate of salt out of the tank }
$$

The initial concentration of salt if $\gamma \mathrm{g} / \mathrm{L}$. The in and out rate of salt mixture to the tank is the same $2 \mathrm{~L} / \mathrm{min}$. Initially, the tank contains 120 L of pure water. Since the in and out rate is the same, the concentration of salt is $q(t)=Q(t) / V(t)$ where $V(t)=120 \mathrm{~L}$. A model for this situation is the following:

$$
\left\{\begin{array}{l}
\frac{d Q}{d t}=\gamma \mathrm{g} / \mathrm{L} \cdot 2 \mathrm{~L} / \mathrm{min}-\frac{Q(t)}{120} \mathrm{~g} / \mathrm{L} \cdot 2 \mathrm{~L} / \mathrm{min}=2 \gamma-\frac{Q(t)}{60} \\
Q(0)=120 \mathrm{~L} \cdot 0 \mathrm{~g} / \mathrm{L}=0 g
\end{array}\right.
$$

This model is an I.V.P consisting of a 1st order, linear differential equation solvable by integrating factor. To solve it we proceed as follow:
(i) Rewrite the equation as $Q^{\prime}+\frac{1}{60} Q=2 \gamma$, (standard linear form).
(ii) Integrating factor: since $p(t)=\frac{1}{60}$ we get $\mu(t)=e^{\int p(t) d t}=e^{\int 1 / 60 d t}=e^{t / 60}$
(iii) Multiply both sides of the equation by the integrating factor: $e^{t / 60}\left[Q^{\prime}+\frac{1}{60} Q=2 \gamma\right]$
(vi) Using product rule and implicit differentiation: $\frac{d}{d t}\left[e^{t / 60} Q\right]=2 \gamma e^{t / 60}$
(v) Integrate both sides: $\int \frac{d}{d t}\left[e^{t / 60} Q\right] d t=\int 2 \gamma e^{t / 60} d t \Longrightarrow e^{t / 60} Q=120 \gamma e^{t / 60}+C$

The general solution is $Q(t)=120 \gamma+C e^{-t / 60}$. Solving for C using the initial condition: $Q(0)=0=$ $120 \gamma+C \Longrightarrow C=-120 \gamma$. The final model for the tank is:

$$
Q(t)=120 \gamma-\frac{120 \gamma}{e^{t / 60}}
$$

As time goes to infinity, the amount of salt in the tank goes to:

$$
\lim _{t \rightarrow \infty} Q(t)=120 \gamma+0=120 \gamma
$$

Since the term $\frac{120 \gamma}{e^{t / 60}}$, goes to zero as the exponent blows up quickly.
4. Let $Q(t)=$ amount of salt in lbs at time t. (Time in minutes). We want to find:

$$
\frac{d Q}{d t}=\text { rate of salt into the tank }- \text { rate of salt out of the tank }
$$

The rate of mixture into the tank is $3 \mathrm{gal} / \mathrm{min}$ while the rate of mixture out of the tank is $2 \mathrm{gal} / \mathrm{min}$. The mixture into the tank contains 1 lb of salt per gallon. In this case, the concentration of salt $q(t)$ varies according to $q(t)=Q(t) / V(t)$, where the volume at time t is given by the differential equation: $\frac{d V}{d t}=3-2=1$, and hence, $V(t)=t+C$ (solving for initial condition $V(0)=200=C$). So the volume is given by $V(t)=t+200$. A model for the change in the amount of salt in the tank is the following:

$$
\left\{\begin{array}{l}
\frac{d Q}{d t}=3 \mathrm{gal} / \mathrm{min} \cdot 1 \mathrm{lbs} / \mathrm{gal}-\frac{Q(t)}{t+200} \mathrm{lbs} / \mathrm{gal} \cdot 2 \mathrm{gal} / \mathrm{min}=3-\frac{2}{t+200} Q \\
Q(0)=100 \mathrm{lbs}
\end{array}\right.
$$

This model is an I.V.P consisting of a 1st order, linear differential equation solvable by integrating factor. To solve it we proceed as follow:
(i) Rewrite the equation as $Q^{\prime}+\frac{2}{t+200} Q=3$, (standard linear form).
(ii) Integrating factor: since $p(t)=\frac{2}{t+200}$ we get $\mu(t)=e^{\int p(t) d t}=e^{\int 2 /(t+200) d t}=(t+200)^{2}$
(iii) Multiply both sides of the equation by the integrating factor: $(t+200)^{2}\left[Q^{\prime}+\frac{2}{t+200} Q=3\right]$
(vi) Using product rule and implicit differentiation: $\frac{d}{d t}\left[(t+200)^{2} Q\right]=3(t+200)^{2}$
(v) Integrate both sides: $\int \frac{d}{d t}\left[(t+200)^{2} Q\right] d t=\int 3(t+200)^{2} d t \Longrightarrow(t+200)^{2} Q=(t+200)^{3}+C$

The general solution is $Q(t)=(t+200)+C(t+200)^{-2}$. Solving for C using the initial condition:

$$
Q(0)=100=200+C\left(200^{-2}\right) \Longrightarrow C=-4 \times 10^{6}
$$

The final model for the tank is:

$$
Q(t)=(t+200)-4 \times 10^{6}(t+200)^{-2}
$$

The solution begins to overflow when the tank is full. This happens exactly at t_{0} when $V\left(t_{0}\right)=500=$ $t_{0}+200 \Longrightarrow t_{0}=300 \mathrm{~min}$. So the solution is valid in the interval $0 \leq t<300$.

Also, the concentration of salt on the point of overflowing is given by $q(300)=Q(300) / V(300)=\left[(300+200)-4 \times 10^{6}(300+200)^{-2}\right] /[300+200]=(500-16) /(500)=\frac{484}{500}=\frac{121}{125} \mathrm{lb} / \mathrm{gal}$

Finally, the theoretical limiting concentration if the tank had infinite capacity is given by:

$$
\lim _{t \rightarrow \infty} q(t)=\lim _{t \rightarrow \infty} \frac{(t+200)-4 \times 10^{6}(t+200)^{-2}}{t+200}=\lim _{t \rightarrow \infty} 1-\frac{4 \times 10^{6}}{(t+200)^{3}}=1 \mathrm{lb} / \mathrm{gal}
$$

Since, $\lim _{t \rightarrow \infty} \frac{4 \times 10^{6}}{(t+200)^{3}}=0$, (the polynomial function in the denominator goes to infinity as t goes to infinity). So, in theory the concentration of salt will match exactly with the concentration of salt entering the tank as times passes.
16. Let $T=$ temperature of cup of coffee and $T_{e}=$ exterior temperature. Then, by Newton's law of cooling:

$$
\begin{cases}\frac{d T}{d t}=k\left(T-T_{e}\right) & \text { for some constant } k \\ T(0)=200, T(1)=190, T_{e}=70 \mathrm{lbs} & \end{cases}
$$

We can rewrite this equation as $T^{\prime}-k T=-k 70$. This is a first order, linear equation solvable by int. factor:
(i) The equation is already in the desired form: $T^{\prime}-k T=-k 70$, (standard linear form).
(ii) Integrating factor: since $p(t)=-k$ we get $\mu(t)=e^{\int p(t) d t}=e^{\int-k d t}=e^{-k t}$
(iii) Multiply both sides of the equation by the integrating factor: $e^{-k t}\left[T^{\prime}-k T=-k 70\right]$
(vi) Using product rule and implicit differentiation: $\frac{d}{d t}\left[e^{-k t} T\right]=-k 70 e^{-k t}$
(v) Integrate both sides: $\int \frac{d}{d t}\left[e^{-k t} T\right] d t=\int-k 70 e^{-k t} d t \Longrightarrow e^{-k t} T=70 e^{-k t}+C$

The general solution is $T(t)=70+C e^{k t}$. This equation has two unknowns: C and k. To solve for C we use the initial condition: $T(0)=200=70+C e^{0} \Longrightarrow C=130$. We update the general solution to $T(t)=70+130 e^{k t}$. Finally, solve for k using $T(1)=190=70+130 e^{t} \Longrightarrow \frac{120}{130}=e^{k} \Longrightarrow k=\ln \left(\frac{12}{13}\right)$. Hence, the equation modeling the change in temperature for the cup of coffee is:

$$
T(t)=70+130\left(\frac{12}{13}\right)^{t}
$$

The coffee reaches the temperature of 150 exactly at t_{0}, i.e.:

$$
T\left(t_{0}\right)=150=70+130\left(\frac{12}{13}\right)^{t_{0}} \Longleftrightarrow \frac{80}{130}=\left(\frac{12}{13}\right)^{t_{0}} \Longleftrightarrow t_{0}=\frac{\ln \left(\frac{8}{13}\right)}{\ln \left(\frac{12}{13}\right)}
$$

Section 2.4

1. $(t-3) y^{\prime}+\ln (t) y=2 t, \quad y(1)=2$. In order to determine an interval in which the solution of the given IVP is certain to exists, let us apply Theorem 2.4.1.

First, write the O.D.E. in canonical form: $y^{\prime}+\frac{\ln (t)}{(t-3)} y=\frac{2 t}{(t-3)}$, where $p(t)=\frac{\ln (t)}{(t-3)}$ and $g(t)=\frac{2 t}{(t-3)}$
The function $p(t)$ is defined if $t>0$ since it depends on $\ln (t)$. Also, both $p(t)$ and $g(t)$ are continuos only if $t-3 \neq 0 \Longleftrightarrow t \neq 3$. The IVP gives conditions on $t_{0}=1$. Therefore, the interval where this IVP is certain to have a unique solution is $t \in(0,3)$.
3. $y^{\prime}+\tan (t) y=\sin (t), \quad y(\pi)=0$

This O.D.E is already in the canonical form. Hence, $p(t)=\tan (t)$ and $g(t)=\sin (t)$.
The function $\tan (t)$ is continuous everywhere except in $\frac{\pi}{2}+n \pi$, for $n \in \mathbb{N}$, while the function $\sin (t)$ is continuous everywhere. The IVP gives conditions on $t_{0}=\pi$. Therefore, the interval where this IVP is certain to have a unique solution is $t \in\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$.
7. $y^{\prime}=\frac{t-y}{2 t+5 y}$. Let $f(t, y)=\frac{t-y}{2 t+5 y}$. Then,

$$
\frac{\partial f}{\partial y}(t, y)=\frac{-1}{2 t+5 y}=\frac{5(t-y)}{(2 t+5 y)^{2}}=\frac{-(2 t+5 y)-5 t+5 y}{(2 t+5 y)^{2}}=\frac{-7 t}{(2 t+5 y)^{2}}
$$

The functions $f(t, y)$ and $\frac{\partial f}{\partial y}(t, y)$ are continuous polynomials functions of t and y and hence, they are continuous everywhere except where they are not defined. In this case, these function are not defined if $2 t+5 y=0$, corresponding to a line in the $t y$-plane. The hypothesis of Theorem 2.4.2 are satisfied everywhere but in this line $2 t+5 y=0$. By Theorem 2.4.2 we can conclude that if $2 t+5 y \neq 0$ then there exists a unique solution to this O.D.E.
10. $y^{\prime}=\left(t^{2}+y^{2}\right)^{\frac{3}{2}}$. Let $f(t, y)=\left(t^{2}+y^{2}\right)^{\frac{3}{2}}$. Then,

$$
\frac{\partial f}{\partial y}(t, y)=\frac{3}{2}\left(t^{2}+y^{2}\right)^{\frac{1}{2}} 2 y=3 y\left(t^{2}+y^{2}\right)^{\frac{1}{2}}
$$

The functions $f(t, y)$ and $\frac{\partial f}{\partial y}(t, y)$ are continuous polynomials functions of t and y and hence, they are continuous everywhere except where they are not defined. In this case, there seems to be the constrain that $t^{2}+y^{2} \geq 0$, but since both quantities t^{2} and y^{2} are never negative we can be sure that this constrain is satisfied. The hypothesis of Theorem 2.4.2 are satisfied everywhere in the $t y$-plane. Hence, we can conclude there exists a unique solution to this O.D.E. everywhere in the $t y$-plane.

Bernoulli assigned problems

(1) $y^{\prime}+\frac{4}{x} y=x^{3} y^{2}, \quad y(2)=-1, \quad x>0$. This is a first order, non-linear, differential equation. It fits the Bernoulli case when $n=2$. Note that, since $y^{\prime}=f(x, y)=x^{3} y^{2}-\frac{4}{x} y$ is defined everywhere except when $x=0$, and so is $\frac{\partial f}{\partial y}=2 x^{3} y-\frac{4}{x}$, theorem 2.4.2 gives us the existence of a solution in some interval containing the point $(2,-1)$. To determine this, we need to solve the equation:
(i) Divide both sides of the equation by $y^{2}: \frac{y^{\prime}}{y^{2}}+\frac{4}{x y}=x^{3}$
(ii) Make the change: $u=y^{1-n}=y^{-1} \Longrightarrow u^{\prime}=\frac{-1}{y^{2}} y^{\prime}$, to obtain the equation on u :

$$
-u^{\prime}+\frac{4}{x} u=x^{3}
$$

This is a first order, linear differential equation. We solve this by integrating factor:
(1) Write the equation in canonical form (divide by -1): $u^{\prime}-\frac{4}{x} u=-x^{3}$
(2) $\mu(x)=e^{\int p(x) d x}$ where $p(x)=-\frac{4}{x}$, hence $\mu(x)=e^{\int-\frac{4}{x} d x}=e^{-4 \ln (x)}=x^{-4}$
(3) Multiply both sides by $\mu(x): \mu\left[u^{\prime}-\frac{4}{x} u=-x^{3}\right] \Longleftrightarrow u^{\prime} x^{-4}-\frac{4}{x^{5}}=-x^{-1}$
(4) By the product rule: $\frac{d}{d x}\left[u x^{-4}\right]=-x^{-1}$
(4) Integrate both sides: $\int \frac{d}{d x}\left[u x^{-4}\right] d x=\int-x^{-1} d x \Longleftrightarrow u x^{-4}=\ln (x)+C$

The general solution, in u is: $u(x)=(c-\ln (x)) x^{4}$
(iii) Change back to y using the relation $u=y^{-1}$:

$$
u(x)=(c-\ln (x)) x^{4} \Longrightarrow y(x)=\frac{1}{x^{4}(c-\ln (x))}
$$

(iv) Solve for the initial condition $y(2)=-1=\frac{1}{2^{4}(C-\ln (2))} \Longrightarrow C=\ln (2)-\frac{1}{16}$

The particular solution for this I.V.P is

$$
y(x)=\frac{1}{x^{4}\left(\ln (2)-\frac{1}{16}-\ln (x)\right)}
$$

The interval of validity of the solution: by hypothesis, $x>0$. Now, the solution $y(x)=\frac{1}{x^{4}(c-\ln (x))}$ is valid everywhere except in two cases: $x=0$ or $C-\ln (x)=0 \Longleftrightarrow \ln (x)=C \Longleftrightarrow x=e^{C}$. So the interval of validity for x is $\left(e^{C}, \infty\right)$. In our case, $C=\ln (2)-\frac{1}{16} \approx 0.6306$, so for our particular solution the interval of validity for x is $(0.6306, \infty)$, which contains $x_{0}=2$.
(2) $y^{\prime}=5 y+e^{-2 x} y^{-2}, \quad y(0)=2$. This is a first order, non-linear, differential equation. It fits the Bernoulli case when $n=-2$. Note that, since both $y^{\prime}=f(x, y)=5 y+e^{-2 x} y^{-2}$ and $\frac{\partial f}{\partial y}$ are discontinuous at $y=0$, theorem 2.4.2 guarantees the existence of a solution in some interval containing (0,2). To determine this, we need to solve the equation:
(i) Rewrite and multiply both sides of the equation by $y^{2}: y^{\prime} y^{2}-5 y^{3}=e^{-2 x}$
(ii) Make the change: $u=y^{1-n}=y^{3} \Longrightarrow u^{\prime}=3 y^{2} y^{\prime}$, to obtain the equation on u :

$$
\frac{u^{\prime}}{3}-5 u=e^{-2 x}
$$

This is a first order, linear differential equation. We solve this by integrating factor:
(1) Write the equation in canonical form (multiply by 3): $u^{\prime}-15 u=3 e^{-2 x}$
(2) $\mu(x)=e^{\int p(x) d x}$ where $p(x)=-15$, hence $\mu(x)=e^{\int-15 d x}=e^{-15 x}$
(3) Multiply both sides by $\mu(x): \mu\left[u^{\prime}-15 u=3 e^{-2 x}\right] \Longleftrightarrow e^{-15 x}\left[u^{\prime}-15 u\right]=3 e^{-17 x}$
(4) By the product rule: $\frac{d}{d x}\left[u \cdot e^{-15 x}\right]=3 e^{-17 x}$
(4) Integrate both sides: $\int \frac{d}{d x}\left[u \cdot e^{-15 x}\right] d x=\int 3 e^{-17 x} d x \Longleftrightarrow u \cdot e^{-15 x}=-\frac{3}{17} e^{-17 x}+C$

The general solution, in u is: $u(x)=C e^{15 x}-\frac{3}{17} e^{-2 x}$
(iii) Change back to y using the relation $u=y^{3}$:

$$
u(x)=C e^{15 x}-\frac{3}{17} e^{-2 x} \Longrightarrow y(x)=\left(C e^{15 x}-\frac{3}{17} e^{-2 x}\right)^{\frac{1}{3}}
$$

(iv) Solve for the initial condition $y(0)=2=\left(C e^{0}-\frac{3}{17} e^{0}\right)^{\frac{1}{3}}=\left(C-\frac{3}{17}\right)^{\frac{1}{3}} \Longrightarrow 2^{3}=C-\frac{3}{17} \Longrightarrow C=\frac{139}{17}$

The particular solution for this I.V.P is

$$
y(x)=\left(\frac{139}{17} e^{15 x}-\frac{3}{17} e^{-2 x}\right)^{\frac{1}{3}}
$$

For the interval of validity, not that the solution is defined everywhere since the cubic root is always continuos. Since our initial condition is $x_{0}=0$, the interval of validity for x is (∞, ∞) and for $y(0, \infty)$. So, the solution is valid in the upper-half of the $x y$ - plane, excluding the x-axis.
(3) $y^{\prime}+\frac{y}{x}-\sqrt{y}=0, \quad y(1)=0$. This is a first order, non-linear, differential equation. It fits the Bernoulli case when $n=\frac{1}{2}$. We solve it as follow:
(i) Rewrite and multiply both sides of the equation by $y^{-\frac{1}{2}}: \quad y^{\prime} y^{-\frac{1}{2}}+y^{\frac{1}{2}} x^{-1}=1$
(ii) Make the change: $u=y^{1-n}=y^{\frac{1}{2}} \Longrightarrow 2 u^{\prime}=y^{\prime} y^{-\frac{1}{2}}$, to obtain the equation on u :

$$
2 u^{\prime}+\frac{u}{x}=1
$$

This is a first order, linear differential equation. We solve this by integrating factor:
(1) Write the equation in canonical form (divide by 2): $u^{\prime}+\frac{1}{2 x} u=\frac{1}{2}$
(2) $\mu(x)=e^{\int p(x) d x}$ where $p(x)=\frac{1}{2 x}$, hence $\mu(x)=e^{\int \frac{1}{2 x} d x}=e^{\ln \left(x^{\frac{1}{2}}\right)}=x^{\frac{1}{2}}$
(3) Multiply both sides by $\mu(x): \mu\left[u^{\prime}+\frac{1}{2 x} u=\frac{1}{2}\right] \Longleftrightarrow \mu\left[u^{\prime}+\frac{1}{2 x} u\right]=\frac{x^{\frac{1}{2}}}{2}$
(4) By the product rule: $\frac{d}{d x}\left[x^{\frac{1}{2}} \cdot u\right]=\frac{x^{\frac{1}{2}}}{2}$
(4) Integrate both sides: $\int \frac{d}{d x}\left[x^{\frac{1}{2}} \cdot u\right] d x=\int \frac{x^{\frac{1}{2}}}{2} d x \Longrightarrow x^{\frac{1}{2}} \cdot u=\frac{1}{3} x^{\frac{3}{2}}+C$

The general solution, in u is: $u(x)=\frac{1}{3} x+C x^{-\frac{1}{2}}$
(iii) Change back to y using the relation $u=y^{\frac{1}{2}}$:

$$
u(x)=\frac{1}{3} x+C x^{-\frac{1}{2}} \Longrightarrow y(x)=\left(\frac{1}{3} x+C x^{-\frac{1}{2}}\right)^{2}
$$

(iv) Solve for the initial condition $y(1)=0=\left(\frac{1}{3}+C\right)^{2} \Longrightarrow C=-\frac{1}{3}$

The particular solution for this I.V.P is

$$
y(x)=\left(\frac{1}{3}(x-\sqrt{x})\right)^{2}
$$

The interval of validity of this solution for x is $(0, \infty)$ and for y is $[0, \infty)$ (first quadrant of the $x y$-plane); since \sqrt{x} and \sqrt{y} cannot be negative and this quadrant contain our initial condition $\left(x_{0}, y_{0}\right)=(1,0)$.

