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Section 2.3

1. Let Q(t) = the amount of dye in grams in the tank at time t. (Time in minutes). We want to find:

dQ

dt
= rate of dye into the tank− rate of dye out of the tank

Since we want to clean the tank, the rate of dye into the tank is zero. The rate of water in and out of the tank
is the same: 2 L/min. The tank initially contains 200 L of a dye solution with a concentration of 1 g/L. The
concentration of dye in the tank is q(t) = Q(t)/V (t), but since the water flows in and out of the tank at the
same rate we have that V (t) = 200 and hence, q(t) = Q(t)/200. A model for this situation is the following:

dQ

dt
= 0 g/L · 2 L/min− Q(t)

200
g/L · 2 L/min = −Q(t)

100
g/min

Q(0) = 200 L · 1 g/L = 200g

This model is an I.V.P consisting of a 1st order, linear differential equation solvable by separating variables.
To solve it we proceed as follow:

dQ

dt
= −Q(t)

100
Tank Model

dQ

Q
= − dt

100
Separating the equation

∫ dQ
Q

=
∫
− dt

100
Integrating both sides

ln(|Q|) = − t

100
+ C Simple integration

Q = Ce−t/100 Exponentiating each side

Using our initial condition: Q(0) = 200 = Ce0 =⇒ C = 200. So our model for this particular situation is

Q(t) = 200e−t/100

We are interested in finding the time t0 such that the concentration of dye in the tank reaches 1% of its
original value, i.e., Q(t0) = 1% · 200 = 2. Using our model:

Q(t0) = 2 = 200e−t0/100 ⇐⇒ 1

100
= e−t0/100 ⇐⇒ ln(

1

100
) = −t0/100 ⇐⇒ t0 = 100ln(100) min

2. Let Q(t) = amount of salt in grams in the tank at time t. (Time in minutes). We want to find:

dQ

dt
= rate of salt into the tank− rate of salt out of the tank

The initial concentration of salt if γ g/L. The in and out rate of salt mixture to the tank is the same 2 L/min.
Initially, the tank contains 120 L of pure water. Since the in and out rate is the same, the concentration of
salt is q(t) = Q(t)/V (t) where V (t) = 120 L. A model for this situation is the following:

dQ

dt
= γ g/L · 2 L/min− Q(t)

120
g/L · 2 L/min = 2γ − Q(t)

60

Q(0) = 120 L · 0 g/L = 0g
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This model is an I.V.P consisting of a 1st order, linear differential equation solvable by integrating factor. To
solve it we proceed as follow:

(i) Rewrite the equation as Q′ +
1

60
Q = 2γ, (standard linear form).

(ii) Integrating factor: since p(t) =
1

60
we get µ(t) = e

∫
p(t)dt = e

∫
1/60dt = et/60

(iii) Multiply both sides of the equation by the integrating factor: et/60[Q′ +
1

60
Q = 2γ]

(vi) Using product rule and implicit differentiation:
d

dt
[et/60Q] = 2γet/60

(v) Integrate both sides:
∫ d

dt
[et/60Q]dt =

∫
2γet/60dt =⇒ et/60Q = 120γet/60 + C

The general solution is Q(t) = 120γ + Ce−t/60. Solving for C using the initial condition: Q(0) = 0 =
120γ + C =⇒ C = −120γ. The final model for the tank is:

Q(t) = 120γ − 120γ

et/60

As time goes to infinity, the amount of salt in the tank goes to:

lim
t→∞

Q(t) = 120γ + 0 = 120γ

Since the term
120γ

et/60
, goes to zero as the exponent blows up quickly.

4. Let Q(t) = amount of salt in lbs at time t. (Time in minutes). We want to find:

dQ

dt
= rate of salt into the tank− rate of salt out of the tank

The rate of mixture into the tank is 3 gal/min while the rate of mixture out of the tank is 2 gal/min.
The mixture into the tank contains 1 lb of salt per gallon. In this case, the concentration of salt q(t)
varies according to q(t) = Q(t)/V (t), where the volume at time t is given by the differential equation:
dV

dt
= 3 − 2 = 1, and hence, V (t) = t + C (solving for initial condition V (0) = 200 = C). So the volume is

given by V (t) = t+ 200. A model for the change in the amount of salt in the tank is the following:
dQ

dt
= 3 gal/min · 1 lbs/gal− Q(t)

t+ 200
lbs/gal · 2 gal/min = 3− 2

t+ 200
Q

Q(0) = 100 lbs

This model is an I.V.P consisting of a 1st order, linear differential equation solvable by integrating factor. To
solve it we proceed as follow:

(i) Rewrite the equation as Q′ +
2

t+ 200
Q = 3, (standard linear form).

(ii) Integrating factor: since p(t) =
2

t+ 200
we get µ(t) = e

∫
p(t)dt = e

∫
2/(t+200)dt = (t+ 200)2

(iii) Multiply both sides of the equation by the integrating factor: (t+ 200)2[Q′ +
2

t+ 200
Q = 3]

(vi) Using product rule and implicit differentiation:
d

dt
[(t+ 200)2Q] = 3(t+ 200)2

(v) Integrate both sides:
∫ d

dt
[(t+ 200)2Q]dt =

∫
3(t+ 200)2dt =⇒ (t+ 200)2Q = (t+ 200)3 + C
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The general solution is Q(t) = (t+ 200) + C(t+ 200)−2. Solving for C using the initial condition:

Q(0) = 100 = 200 + C(200−2) =⇒ C = −4× 106

The final model for the tank is:

Q(t) = (t+ 200)− 4× 106(t+ 200)−2

The solution begins to overflow when the tank is full. This happens exactly at t0 when V (t0) = 500 =
t0 + 200 =⇒ t0 = 300 min. So the solution is valid in the interval 0 ≤ t < 300.

Also, the concentration of salt on the point of overflowing is given by

q(300) = Q(300)/V (300) = [(300+200)−4×106(300+200)−2]/[300+200] = (500−16)/(500) =
484

500
=

121

125
lb/gal

Finally, the theoretical limiting concentration if the tank had infinite capacity is given by:

lim
t→∞

q(t) = lim
t→∞

(t+ 200)− 4× 106(t+ 200)−2

t+ 200
= lim
t→∞

1− 4× 106

(t+ 200)3
= 1 lb/gal

Since, lim
t→∞

4× 106

(t+ 200)3
= 0, (the polynomial function in the denominator goes to infinity as t goes to infinity).

So, in theory the concentration of salt will match exactly with the concentration of salt entering the tank as
times passes.

16. Let T = temperature of cup of coffee and Te = exterior temperature. Then, by Newton’s law of cooling:
dT

dt
= k(T − Te) for some constant k

T (0) = 200, T (1) = 190, Te = 70 lbs

We can rewrite this equation as T ′− kT = −k70. This is a first order, linear equation solvable by int. factor:

(i) The equation is already in the desired form: T ′ − kT = −k70, (standard linear form).

(ii) Integrating factor: since p(t) = −k we get µ(t) = e
∫
p(t)dt = e

∫
−kdt = e−kt

(iii) Multiply both sides of the equation by the integrating factor: e−kt[T ′ − kT = −k70]

(vi) Using product rule and implicit differentiation:
d

dt
[e−ktT ] = −k70e−kt

(v) Integrate both sides:
∫ d

dt
[e−ktT ]dt =

∫
−k70e−ktdt =⇒ e−ktT = 70e−kt + C

The general solution is T (t) = 70+Cekt. This equation has two unknowns: C and k. To solve for C we use the
initial condition: T (0) = 200 = 70+Ce0 =⇒ C = 130. We update the general solution to T (t) = 70+130ekt.

Finally, solve for k using T (1) = 190 = 70 + 130et =⇒ 120

130
= ek =⇒ k = ln

(
12

13

)
. Hence, the equation

modeling the change in temperature for the cup of coffee is:

T (t) = 70 + 130

(
12

13

)t
The coffee reaches the temperature of 150 exactly at t0, i.e.:

T (t0) = 150 = 70 + 130

(
12

13

)t0
⇐⇒ 80

130
=

(
12

13

)t0
⇐⇒ t0 =

ln

(
8

13

)
ln

(
12

13

)
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Section 2.4

1. (t− 3)y′ + ln(t)y = 2t, y(1) = 2. In order to determine an interval in which the solution of the given IVP
is certain to exists, let us apply Theorem 2.4.1.

First, write the O.D.E. in canonical form: y′ +
ln(t)

(t− 3)
y =

2t

(t− 3)
, where p(t) =

ln(t)

(t− 3)
and g(t) =

2t

(t− 3)

The function p(t) is defined if t > 0 since it depends on ln(t). Also, both p(t) and g(t) are continuos
only if t− 3 6= 0 ⇐⇒ t 6= 3. The IVP gives conditions on t0 = 1. Therefore, the interval where this IVP is
certain to have a unique solution is t ∈ (0, 3).

3. y′ + tan(t)y = sin(t), y(π) = 0

This O.D.E is already in the canonical form. Hence, p(t) = tan(t) and g(t) = sin(t).

The function tan(t) is continuous everywhere except in π
2 + nπ, for n ∈ N, while the function sin(t) is

continuous everywhere. The IVP gives conditions on t0 = π. Therefore, the interval where this IVP is certain
to have a unique solution is t ∈ (π2 ,

3π
2 ).

7. y′ =
t− y

2t+ 5y
. Let f(t, y) =

t− y
2t+ 5y

. Then,

∂f

∂y
(t, y) =

−1

2t+ 5y
=

5(t− y)

(2t+ 5y)2
=
−(2t+ 5y)− 5t+ 5y

(2t+ 5y)2
=

−7t

(2t+ 5y)2

The functions f(t, y) and
∂f

∂y
(t, y) are continuous polynomials functions of t and y and hence, they are

continuous everywhere except where they are not defined. In this case, these function are not defined if
2t+5y = 0, corresponding to a line in the ty-plane. The hypothesis of Theorem 2.4.2 are satisfied everywhere
but in this line 2t+ 5y = 0. By Theorem 2.4.2 we can conclude that if 2t+ 5y 6= 0 then there exists a unique
solution to this O.D.E.

10. y′ = (t2 + y2)
3
2 . Let f(t, y) = (t2 + y2)

3
2 . Then,

∂f

∂y
(t, y) =

3

2
(t2 + y2)

1
2 2y = 3y(t2 + y2)

1
2

The functions f(t, y) and
∂f

∂y
(t, y) are continuous polynomials functions of t and y and hence, they are

continuous everywhere except where they are not defined. In this case, there seems to be the constrain that
t2 + y2 ≥ 0, but since both quantities t2 and y2 are never negative we can be sure that this constrain is
satisfied. The hypothesis of Theorem 2.4.2 are satisfied everywhere in the ty-plane. Hence, we can conclude
there exists a unique solution to this O.D.E. everywhere in the ty-plane.

Bernoulli assigned problems

(1) y′ +
4

x
y = x3y2, y(2) = −1, x > 0. This is a first order, non-linear, differential equation. It fits the

Bernoulli case when n = 2. Note that, since y′ = f(x, y) = x3y2 − 4
xy is defined everywhere except when

x = 0, and so is ∂f
∂y = 2x3y− 4

x , theorem 2.4.2 gives us the existence of a solution in some interval containing

the point (2,−1). To determine this, we need to solve the equation:

(i) Divide both sides of the equation by y2:
y′

y2
+

4

xy
= x3

(ii) Make the change: u = y1−n = y−1 =⇒ u′ =
−1

y2
y′, to obtain the equation on u:

−u′ + 4

x
u = x3

This is a first order, linear differential equation. We solve this by integrating factor:
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(1) Write the equation in canonical form (divide by −1): u′ − 4

x
u = −x3

(2) µ(x) = e
∫
p(x)dx where p(x) = − 4

x , hence µ(x) = e
∫
− 4

xdx = e−4ln(x) = x−4

(3) Multiply both sides by µ(x): µ[u′ − 4

x
u = −x3] ⇐⇒ u′x−4 − 4

x5
= −x−1

(4) By the product rule:
d

dx
[ux−4] = −x−1

(4) Integrate both sides:
∫ d

dx
[ux−4]dx =

∫
−x−1dx ⇐⇒ ux−4 = ln(x) + C

The general solution, in u is: u(x) = (c− ln(x))x4

(iii) Change back to y using the relation u = y−1:

u(x) = (c− ln(x))x4 =⇒ y(x) =
1

x4(c− ln(x))

(iv) Solve for the initial condition y(2) = −1 =
1

24(C − ln(2))
=⇒ C = ln(2)− 1

16

The particular solution for this I.V.P is

y(x) =
1

x4(ln(2)− 1

16
− ln(x))

The interval of validity of the solution: by hypothesis, x > 0. Now, the solution y(x) =
1

x4(c− ln(x))
is valid

everywhere except in two cases: x = 0 or C − ln(x) = 0 ⇐⇒ ln(x) = C ⇐⇒ x = eC . So the interval of

validity for x is (eC ,∞). In our case, C = ln(2)− 1

16
≈ 0.6306, so for our particular solution the interval of

validity for x is (0.6306,∞), which contains x0 = 2.

(2) y′ = 5y + e−2xy−2, y(0) = 2. This is a first order, non-linear, differential equation. It fits the Bernoulli
case when n = −2. Note that, since both y′ = f(x, y) = 5y + e−2xy−2 and ∂f

∂y are discontinuous at y = 0,

theorem 2.4.2 guarantees the existence of a solution in some interval containing (0, 2). To determine this, we
need to solve the equation:

(i) Rewrite and multiply both sides of the equation by y2: y′y2 − 5y3 = e−2x

(ii) Make the change: u = y1−n = y3 =⇒ u′ = 3y2y′, to obtain the equation on u:

u′

3
− 5u = e−2x

This is a first order, linear differential equation. We solve this by integrating factor:

(1) Write the equation in canonical form (multiply by 3): u′ − 15u = 3e−2x

(2) µ(x) = e
∫
p(x)dx where p(x) = −15, hence µ(x) = e

∫
−15dx = e−15x

(3) Multiply both sides by µ(x): µ[u′ − 15u = 3e−2x] ⇐⇒ e−15x[u′ − 15u] = 3e−17x

(4) By the product rule:
d

dx
[u · e−15x] = 3e−17x

(4) Integrate both sides:
∫ d

dx
[u · e−15x]dx =

∫
3e−17xdx ⇐⇒ u · e−15x = − 3

17
e−17x + C

The general solution, in u is: u(x) = Ce15x − 3

17
e−2x

(iii) Change back to y using the relation u = y3:

u(x) = Ce15x − 3

17
e−2x =⇒ y(x) = (Ce15x − 3

17
e−2x)

1
3

(iv) Solve for the initial condition y(0) = 2 = (Ce0 − 3

17
e0)

1
3 = (C − 3

17
)

1
3 =⇒ 23 = C − 3

17
=⇒ C =

139

17
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The particular solution for this I.V.P is

y(x) = (
139

17
e15x − 3

17
e−2x)

1
3

For the interval of validity, not that the solution is defined everywhere since the cubic root is always continuos.
Since our initial condition is x0 = 0, the interval of validity for x is (∞,∞) and for y (0,∞). So, the solution
is valid in the upper-half of the xy− plane, excluding the x−axis.

(3) y′+
y

x
−√y = 0, y(1) = 0. This is a first order, non-linear, differential equation. It fits the Bernoulli case

when n = 1
2 . We solve it as follow:

(i) Rewrite and multiply both sides of the equation by y−
1
2 : y′y−

1
2 + y

1
2x−1 = 1

(ii) Make the change: u = y1−n = y
1
2 =⇒ 2u′ = y′y−

1
2 , to obtain the equation on u:

2u′ +
u

x
= 1

This is a first order, linear differential equation. We solve this by integrating factor:

(1) Write the equation in canonical form (divide by 2): u′ +
1

2x
u =

1

2

(2) µ(x) = e
∫
p(x)dx where p(x) = 1

2x , hence µ(x) = e
∫

1
2xdx = eln(x

1
2 ) = x

1
2

(3) Multiply both sides by µ(x): µ[u′ +
1

2x
u =

1

2
] ⇐⇒ µ[u′ +

1

2x
u] =

x
1
2

2

(4) By the product rule:
d

dx
[x

1
2 · u] =

x
1
2

2

(4) Integrate both sides:
∫ d

dx
[x

1
2 · u]dx =

∫ x 1
2

2
dx =⇒ x

1
2 · u = 1

3x
3
2 + C

The general solution, in u is: u(x) = 1
3x+ Cx−

1
2

(iii) Change back to y using the relation u = y
1
2 :

u(x) =
1

3
x+ Cx−

1
2 =⇒ y(x) = (

1

3
x+ Cx−

1
2 )2

(iv) Solve for the initial condition y(1) = 0 = ( 1
3 + C)2 =⇒ C = −1

3

The particular solution for this I.V.P is

y(x) = (
1

3
(x−

√
x))2

The interval of validity of this solution for x is (0,∞) and for y is [0,∞) (first quadrant of the xy−plane);
since

√
x and

√
y cannot be negative and this quadrant contain our initial condition (x0, y0) = (1, 0).
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