M343 Homework 1

Enrique Areyan
 May 10, 2013

Section 1.3

2. Second order, nonlinear.
3. First order, nonlinear.
4. Third order, linear.
5. Given the following second order, linear differential equation: $y^{\prime \prime}+y=\sec (t), \quad 0<t<\pi / 2$, let us check that the function $y(t)=\cos (t) \ln (\cos (t))+t \sin t(t)$ is a solution. For this, let us first compute $y^{\prime \prime}$ as follow:

$$
\begin{aligned}
y^{\prime \prime} & =\left[(\cos (t) \ln (\cos (t))+t \sin (t))^{\prime}\right]^{\prime} \\
& =\left[(\cos (t) \ln (\cos (t)))^{\prime}+(t \sin (t))^{\prime}\right]^{\prime} \\
& =\left[-\sin (t) \ln (\cos (t))+\cos (t) \frac{1}{\cos (t)}-\sin (t)+\sin (t)+t \cos (t)\right]^{\prime} \\
& =[(\ln (\cos (t))+1)(-\sin (t))+\sin (t)+t \cos (t)]^{\prime} \\
& =[(\ln (\cos (t))+1)(-\sin (t))]^{\prime}+\sin (t)^{\prime}+(t \cos (t))^{\prime} \\
& =\frac{1}{\cos (t)} \sin 2(t)+(\ln (\cos (t))+1)(-\cos (t))+\cos (t)+\cos (t)+t(-\sin t(t)) \\
& =\frac{\sin ^{2}(t)}{\cos (t)}-\cos (t) \ln (\cos (t))-\cos (t)+2 \cos (t)-t \sin (t) \\
& =\frac{\sin ^{2}(t)}{\cos (t)}-\cos (t) \ln (\cos (t))+\cos (t)-t \sin (t)
\end{aligned}
$$

Now, the relation becomes:

$$
\begin{aligned}
y^{\prime \prime}+y & =\left(\frac{\sin ^{2}(t)}{\cos (t)}-\cos (t) \ln (\cos (t))+\cos (t)-t \sin (t)\right)+(\cos (t) \ln (\cos (t))+t \sin t(t)) \\
& =\frac{\sin ^{2}(t)}{\cos (t)}+\cos (t) \\
& =\frac{\sin ^{2}(t)+\cos ^{2}(t)}{\cos (t)} \\
& =\frac{1}{\cos (t)} \\
& =\sec (t) . \quad \text { Showing that indeed } y \text { is a solution to the differential equation. }
\end{aligned}
$$

Section 2.2

5. $\frac{d y}{d x}=\left(\cos ^{2}(x)\right)\left(\cos ^{2}(2 y)\right)$. This is a first order, nonlinear, separable differential equation. To solve it we proceed as follow:

$$
\begin{array}{rlr}
\frac{d y}{\cos ^{2}(2 y)} & =\cos ^{2}(2 x) d x & \text { Separating the equation } \\
\int \frac{d y}{\cos ^{2}(2 y)} & =\int \cos ^{2}(2 x) d x & \text { Integrating both sides } \\
x / 2+\sin (2 x) / 4 & =\sin (2 y) / 2 \cos (2 y)+C & \text { Trigonometrical integration } \\
2 x+\sin (2 x) & =2 \tan (2 y)+C & \text { Multiplying by } 4 \text { and trig. identities } \\
2 x+\sin (2 x)-2 \tan (2 y) & =C & \text { General Solution. }
\end{array}
$$

Where $\cos (2 y) \neq 0$, and $2 y$ cannot be a multiple of $\pi / 2$.
8. $\frac{d y}{d x}=\frac{x^{2}}{1+y^{2}}$. This is a first order, nonlinear, separable differential equation. To solve it we proceed as follow:

$$
\begin{array}{rlr}
\left(1+y^{2}\right) d y & =x^{2} d x & \text { Separating the equation } \\
\int\left(1+y^{2}\right) d y & =\int x^{2} d x & \text { Integrating both sides } \\
y+y^{3} / 3 & =x^{3} / 3+C & \text { Simple polynomial integration } \\
3 y+y^{3} & =x^{3}+C & \text { Multiplying by } 3 \\
3 y+y^{3}-x^{3} & =C & \text { General Solution. }
\end{array}
$$

12. Consider the differential equation: $\frac{d r}{d \theta}=\frac{r^{2}}{\theta}$ with initial condition $r(1)=2$
(a) This is a first order, nonlinear, separable equation. To solve it we proceed as follow:

$$
\begin{array}{rlr}
\frac{d r}{r^{2}} & =\frac{d \theta}{\theta} & \text { Separating the equation } \\
\int \frac{d r}{r^{2}} & =\int \frac{d \theta}{\theta} & \text { Integrating both sides } \\
\frac{-1}{r} & =\ln (|\theta|)+C & \text { Solving for } r \\
r(\theta) & =\frac{-1}{\ln (|\theta|)+C} & \text { General solution }
\end{array}
$$

Now we solve for C given that $r(1)=2=\frac{-1}{\ln (1)+C}=\frac{-1}{C} \Rightarrow C=\frac{-1}{2}$. Hence, the solution for the initial value problem is given explicitly by:

$$
r(\theta)=\frac{2}{1-2 \ln (|\theta|)}
$$

(b)

Plots :

plot $2 /(1-2$ * $\ln (x))$ | Computed by Wolfram|Alpha
(c) The function $r(\theta)$ is a composition of continuos functions so it is continuos everywhere except where it is not defined. In this case, the function is not defined if $2 \ln (|\theta|)=1$, which would make the denominator zero. Hence, $\theta \neq e^{\frac{1}{2}}$. The domain is therefore $\theta \in(0, \mathrm{inf}) \backslash e^{\frac{1}{2}}$.
15. Consider the differential equation: $y^{\prime}=\frac{2 x}{1+2 y}$ with initial condition $y(x=2)=0$.
(a) This is a first order, nonlinear, separable differential equation. To solve it we proceed as follow:

$$
\begin{array}{rlr}
(1+2 y) d y & =2 x d x & \text { Separating the equation } \\
\int(1+2 y) d y & =\int 2 x d x & \text { Integrating both sides } \\
y+y^{2} & =x^{2}+C & \text { Simple polynomial integration } \\
y+y^{2}-x^{2} & =C & \text { General Solution. }
\end{array}
$$

Now we solve for C given that $y=0$ when $x=2$. Then, $0+0^{2}-2^{2}=C \Rightarrow C=-4$. Finally, we solve y explicitly in terms of x to obtain the solution:

$$
y+y^{2}-x^{2}=-4 \Longleftrightarrow\left(y+\frac{1}{2}\right)^{2}-\frac{1}{4}=x^{2}-4 \Longleftrightarrow y+\frac{1}{2}= \pm \sqrt{x^{2}-\frac{15}{4}} \Longleftrightarrow y= \pm \sqrt{x^{2}-\frac{15}{4}}-\frac{1}{2}
$$

(b)

Computed by Wolfram|Alpha

(c) The solution $y= \pm \sqrt{x^{2}-\frac{15}{4}}-\frac{1}{2}$ is defined if and only if $x^{2}-\frac{15}{4} \geq 0 \Longleftrightarrow x \geq \frac{\sqrt{15}}{2}$
19. Consider the differential equation: $\sin (2 x) d x+\cos (3 y) d y=0$ with initial condition $y(x=\pi / 2)=\pi / 3$. This is a first order, nonlinear, separable differential equation. To solve it we proceed as follow:

$$
\begin{aligned}
-\sin (2 x) d x & =\cos (3 y) d y & \text { Separating the equation } \\
\int-\sin (2 x) d x & =\int \cos (3 y) d y & \text { Integrating both sides } \\
C-\frac{1}{2} \cos (2 x) & =-\frac{1}{3} \sin (3 y) & \text { Trigonometric integration } \\
\frac{1}{2} \cos (2 x)-\frac{1}{3} \sin (3 y) & =C & \text { General Solution. }
\end{aligned}
$$

Now we solve for C given that $y=\pi / 3$ when $x=\pi / 2$. Then, $\frac{1}{2} \cos (\pi)-\frac{1}{3} \sin (\pi)=C \Rightarrow C=\frac{1}{2}$. The solution is:

$$
\frac{1}{2} \cos (2 x)-\frac{1}{3} \sin (3 y)=\frac{1}{2} \Longleftrightarrow y(x)=\frac{\arcsin \left(\frac{3}{2}(\cos (2 x)-1)\right)}{3}
$$

For the solution to be defined we have to have $\cos ^{2}(x) \leq 1 / 3 \Longleftrightarrow|\cos (x)| \leq 1 / \sqrt{3}$, and hence,

$$
\arccos (1 / \sqrt{3}) \leq x \leq \pi-\arccos (1 / \sqrt{3})
$$

22. Consider the differential equation: $y^{\prime}=\frac{3 x^{2}}{3 y^{2}-4}$ with initial condition $y(x=1)=0$. This is a first order, nonlinear, separable differential equation. To solve it we proceed as follow:

$$
\begin{array}{rlr}
\left(3 y^{2}-4\right) d y & =3 x^{2} d x & \text { Separating the equation } \\
\int\left(3 y^{2}-4\right) d y & =\int 3 x^{2} d x & \text { Integrating both sides } \\
y^{3}-4 y & =x^{3}+C & \text { Simple polynomial integration } \\
y^{3}-4 y-x^{3} & =C & \text { General Solution. }
\end{array}
$$

Now we solve for C given that $y=0$ when $x=1$. Then, $0^{3}-4(0)-1^{3}=C \Rightarrow C=-1$. The solution is:

$$
y^{3}-4 y-x^{3}=-1
$$

To determine the interval in which the solution is valid we should first notice that from our original D.E., we have the constraint that $3 y^{2}-4 \neq 0 \Longleftrightarrow y \neq \pm \frac{2}{\sqrt{3}}$
23. Consider the differential equation: $y^{\prime}=2 y^{2}+x y^{2}$ with initial condition $y(x=0)=1$. This is a first order, nonlinear, separable differential equation. To solve it we proceed as follow:

$$
\begin{array}{rlr}
\frac{d y}{d x} & =y^{2}(2+x) & \text { Rewriting the equation } \\
\frac{d y}{y^{2}} & =(2+x) d x & \text { Separating the equation } \\
\int \frac{d y}{y^{2}} & =\int(2+x) d x & \text { Integrating both sides } \\
\frac{-1}{y} & =2 x+\frac{x^{2}}{2}+C & \text { Simple polynomial integration } \\
\frac{-2}{y} & =x^{2}+4 x+C & \text { Multiplying both sides by 2 } \\
y(x) & =\frac{-2}{x^{2}+4 x+C} & \text { General Solution. }
\end{array}
$$

Now we solve for C given that $y(0)=1=\frac{-2}{C} \Longleftrightarrow C=-2$. The solution is:

$$
y(x)=\frac{-2}{x^{2}+4 x-2}
$$

To obtain the minimum value, it suffices to minimize $f(x)=x^{2}+4 x-2$, since we take -2 and divided by this value. We know this is a parabola, and so it has a minimum value. Using the first and second derivative tests the minimum x_{0} is such that: $f^{\prime}\left(x_{0}\right)=0=2 x_{0}+4 \Rightarrow x_{0}=-4 / 2=-2$. Also, $f^{\prime \prime}\left(x_{0}\right)=2>0$, hence x_{0} is a minimum (which we already know from the fact that $f(x)$ is a parabola). Therefore, the minimum is attained at $x_{0}=-2$.
24. Consider the differential equation: $y^{\prime}=\frac{2-e^{x}}{3+2 y}$ with initial condition $y(x=0)=0$. This is a first order, linear, separable differential equation. To solve it we proceed as follow:

$$
\begin{array}{rlr}
(3+2 y) d y & =\left(2-e^{x}\right) d x & \text { Separating the equation } \\
\int(3+2 y) d y & =\int\left(2-e^{x}\right) d x & \text { Integrating both sides } \\
3 y+y^{2} & =2 x-e^{x}+C & \text { Simple polynomial integration }
\end{array}
$$

Now we solve for C given that $y=0$ when $x=0$. i.e., $0=0-e^{0}+C \Rightarrow C=1$. Finally, we write the explicit
solution:

$$
3 y+y^{2}=2 x-e^{x}+1 \Longleftrightarrow\left(y+\frac{3}{2}\right)^{2}=2 x-e^{x}+\frac{13}{4} \Longleftrightarrow y= \pm \sqrt{2 x-e^{x}+\frac{13}{4}}-\frac{3}{2}
$$

This function is maximized exactly when $f(x)=\sqrt{2 x-e^{x}+\frac{13}{4}}$ is maximize. Since the square root is an increasing function, we can maximize the simpler function $g(x)=f(x)^{2}=2 x-e^{x}+\frac{13}{4}$. Using the first and second derivative tests, the minimum x_{0} is such that : $f^{\prime}\left(x_{0}\right)=2-e^{x_{0}}=0 \Rightarrow e^{x_{0}}=2 \Longleftrightarrow x_{0}=\ln (2)$. Also, $f^{\prime \prime}\left(x_{0}\right)=-e^{x_{0}}<0$ for any value of x_{0}. Hence, the maximum is attained at $x_{0}=\ln (2)$.

Section 2.1

3. (c) The equation $y^{\prime}+y=t e^{-t}+1$ is a first order, linear equation. We solve this by integrating factor:
(i) The equation is already in the desired form $y^{\prime}+y=t e^{-t}+1$, with 1 as the coefficient of y^{\prime}.
(ii) Integrating factor: since $p(t)=1$ we get $\mu(t)=e^{\int p(t) d t}=e^{\int 1 d t}=e^{t}$
(iii) Multiply both sides of the equation by the integrating factor: $e^{t}\left[y^{\prime}+y\right]=e^{t}\left[t e^{-t}+1\right]$
(vi) Using product rule and implicit differentiation: $\frac{d}{d t}\left[e^{t} y\right]=t e^{t-t}+e^{t} \Longrightarrow \frac{d}{d t}\left[e^{t} y\right]=t+e^{t}$
(v) Integrate both sides: $\int \frac{d}{d t}\left[e^{t} y\right]=\int t+e^{t} d t \Longrightarrow e^{t} y=t^{2} / 2+e^{t}+C$

The final solution is $y(t)=\left(t^{2} / 2+e^{t}+C\right) / e^{t} \Longleftrightarrow y(t)=t^{2} / 2 e^{t}+1+C / e^{t}$.
Also, since $\lim _{t \rightarrow \infty} y(t)=\infty^{2} / 2 e^{\infty}+1+C / e^{\infty}$ is an indeterminate form, we can use L'Hopital as follow:

$$
\begin{gathered}
\lim _{t \rightarrow \infty} y(t)=\frac{\frac{1}{2} t^{2}+e^{t}+c}{e^{t}}=\lim _{t \rightarrow \infty} \frac{\left(\frac{1}{2} t^{2}+e^{t}+c\right)^{\prime}}{\left(e^{t}\right)^{\prime}}=\lim _{t \rightarrow \infty} \frac{t+e^{t}}{e^{t}} \text { still indeterminate apply L'Hopital again } \\
=\lim _{t \rightarrow \infty} \frac{t+e^{t}}{e^{t}}=\lim _{t \rightarrow \infty} \frac{\left(t+e^{t}\right)^{\prime}}{\left(e^{t}\right)^{\prime}}=\lim _{t \rightarrow \infty} \frac{1+e^{t}}{e^{t}}=\lim _{t \rightarrow \infty} \frac{1}{e^{t}}+1=0+1=1
\end{gathered}
$$

Since $1 / e^{t}$ goes to zero as t goes to infinity. We could have also derived this limit by observing that e^{t} grows much faster than t^{2}.
7. (c) The equation $y^{\prime}+2 t y=2 t e^{-t^{2}}$ is a first order, linear equation. We solve this by integrating factor:
(i) The equation is already in the desired form $y^{\prime}+2 t y=2 t e^{-t^{2}}$, with 1 as the coefficient of y^{\prime}.
(ii) Integrating factor: since $p(t)=2 t$ we get $\mu(t)=e^{\int p(t) d t}=e^{\int 2 t d t}=e^{t^{2}}$
(iii) Multiply both sides of the equation by the integrating factor: $e^{t^{2}}\left[y^{\prime}+2 t y\right]=e^{t^{2}}\left[2 t e^{-t^{2}}\right]$
(vi) Using product rule and implicit differentiation: $\frac{d}{d t}\left[e^{t^{2}} y\right]=2 t e^{t^{2}-t^{2}} \Longrightarrow \frac{d}{d t}\left[e^{t^{2}} y\right]=2 t$
(v) Integrate both sides: $\int \frac{d}{d t}\left[e^{t^{2}} y\right] d t=\int 2 t d t \Longrightarrow e^{t^{2}} y=t^{2}+C$

The final solution is $y(t)=\frac{t^{2}+C}{e^{t^{2}}}$.
Also, since $\lim _{t \rightarrow \infty} y(t)=\frac{\infty^{2}+C}{e^{\infty^{2}}}$ is an indeterminate form, we can use L'Hopital as follow:

$$
\lim _{t \rightarrow \infty} y(t)=\frac{t^{2}+C}{e^{t^{2}}}=\lim _{t \rightarrow \infty} \frac{\left(t^{2}+C\right)^{\prime}}{\left(e^{t^{2}}\right)^{\prime}}=\lim _{t \rightarrow \infty} \frac{2 t}{2 t e^{t^{2}}}=\lim _{t \rightarrow \infty} \frac{1}{e^{t^{2}}}=0
$$

We could have also derived this limit by observing that $e^{t^{2}}$ grows much faster than $t^{2}+C$ for C a constant.
8. (c) The equation $\left(1+t^{2}\right) y^{\prime}+4 t y=\left(1+t^{2}\right)^{-2}$ is a first order, linear equation. We solve this by integrating factor:
(i) Multiply by $\left(1+t^{2}\right)^{-1}$ both sides of the equation to transform it to the desired form:

$$
y^{\prime}+\frac{4 t}{1+t^{2}} y=\left(1+t^{2}\right)^{-3}
$$

(ii) Integrating factor: since $p(t)=\frac{4 t}{1+t^{2}}$ we get $\mu(t)=e^{\int p(t) d t}=e^{\int \frac{4 t}{1+t^{2}} d t}$. We can solve the integral by making the substitution: $u=1+t^{2} \Longrightarrow d u=2 t d t \Longrightarrow d t=\frac{d u}{2 t}$, to obtain as the integrating factor: $e^{2 \ln \left(1+t^{2}\right)}=\left(1+t^{2}\right)^{2}$
(iii) Multiply both sides of the equation by the integrating factor: $\left(1+t^{2}\right)^{2}\left[y^{\prime}+\frac{4 t}{1+t^{2}} y\right]=\left(1+t^{2}\right)^{2}\left[\left(1+t^{2}\right)^{-3}\right]$
(vi) Using product rule and implicit differentiation: $\frac{d}{d t}\left[\left(1+t^{2}\right)^{2} y\right]=\left(1+t^{2}\right)^{-1}$
(v) Integrate both sides: $\int \frac{d}{d t}\left[\left(1+t^{2}\right)^{2} y\right] d t=\int\left(1+t^{2}\right)^{-1} d t \Longrightarrow\left(1+t^{2}\right)^{2} y=\arctan (t)+C$

The final solution is $y(t)=\frac{\arctan (t)+C}{\left(1+t^{2}\right)^{2}}$.
Also, $\lim _{t \rightarrow \infty} y(t)=0$ since $\arctan (t)$ approaches $\pi / 2$ as t goes to infinity, but $\left(1+t^{2}\right)^{2}$ approaches infinity as t approaches infinity. Again, we could have use L'Hopital to solve this limit.
15. The equation $t y^{\prime}+2 y=t^{2}-t+1, y(1)=\frac{1}{2}, t>0$ is a first order, linear equation. We solve this by integrating factor:
(i) Multiply by t^{-1} both sides of the equation to transform it to the desired form:

$$
y^{\prime}+\frac{2}{t} y=\frac{t^{2}-t+1}{t}
$$

(ii) Integrating factor: since $p(t)=\frac{2}{t}$ we get $\mu(t)=e^{\int p(t) d t}=e^{\int \frac{2}{t} d t}=e^{2 \ln (t)}=t^{2}$
(iii) Multiply both sides of the equation by the integrating factor: $t^{2}\left[y^{\prime}+\frac{2}{t} y\right]=t^{2}\left[\frac{t^{2}-t+1}{t}\right]=t^{3}-t^{2}+t$
(vi) Using product rule and implicit differentiation: $\frac{d}{d t}\left[t^{2} y\right]=t^{3}-t^{2}+t$
(v) Integrate both sides: $\int \frac{d}{d t}\left[t^{2} y\right] d t=\int\left(t^{3}-t^{2}+t\right) d t \Longrightarrow t^{2} y=\frac{t^{4}}{4}-\frac{t^{3}}{3}+\frac{t^{2}}{2}+C$

The general solution is $y(t)=\frac{\frac{t^{4}}{4}-\frac{t^{3}}{3}+\frac{t^{2}}{2}+C}{t^{2}}=\frac{t^{2}}{4}-\frac{t}{3}+\frac{1}{2}+\frac{C}{t^{2}}$.
Now we solve for the initial condition: $y(1)=\frac{1}{2}=\frac{1}{2}-\frac{1}{3}+\frac{1}{2}+C=\frac{3-4+6}{12}+C=\frac{5}{12}+C \Longrightarrow C=\frac{1}{12}$. So our particular solution is:

$$
y(t)=\frac{t^{2}}{4}-\frac{t}{3}+\frac{1}{2}+\frac{\frac{1}{12}}{t^{2}} \Longleftrightarrow y(t)=\frac{3 t^{4}-4 t^{3}+6 t^{2}+1}{12 t^{2}}
$$

16. The equation $y^{\prime}+\frac{2}{t} y=\frac{\operatorname{cost}}{t^{2}}, y(\pi)=0, t>0$ is a first order, linear equation. We solve this by integrating factor:
(i) The equation is already in the desired form $y^{\prime}+\frac{2}{t} y=\frac{\operatorname{cost}}{t^{2}}$, with 1 as the coefficient of y^{\prime}.
(ii) Integrating factor: since $p(t)=\frac{2}{t}$ we get $\mu(t)=e^{\int p(t) d t}=e^{\int \frac{2}{t} d t}=e^{2 \ln (t)}=t^{2}$.
(iii) Multiply both sides of the equation by the integrating factor: $t^{2}\left[y^{\prime}+\frac{2}{t} y\right]=t^{2}\left[\frac{\cos t}{t^{2}}\right]$
(vi) Using product rule and implicit differentiation: $\frac{d}{d t}\left[t^{2} y\right]=$ cost
(v) Integrate both sides: $\int \frac{d}{d t}\left[t^{2} y\right]=\int \cos t d t \Longrightarrow t^{2} y=\sin (t)+C$

The general solution is $y(t)=\frac{\sin (t)+C}{t^{2}}$. Finally, we solve for C using the initial conditions:

$$
y(\pi)=0=\frac{\sin (\pi)+C}{\pi^{2}}=\frac{C}{\pi^{2}} \Longrightarrow C=0
$$

The particular solution is:

$$
y(t)=\frac{\sin (t)}{t^{2}}
$$

27. Consider the initial value problem:

$$
y^{\prime}+\frac{1}{2} y=2 \cos (t), \quad y(0)=-1, t>0
$$

This equation is a first order, linear equation. We solve this by integrating factor:
(i) The equation is already in the desired form $y^{\prime}+\frac{1}{2} y=2 \cos (t)$, with 1 as the coefficient of y^{\prime}.
(ii) Integrating factor: since $p(t)=\frac{1}{2}$ we get $\mu(t)=e^{\int p(t) d t}=e^{\int \frac{1}{2} d t}=e^{\frac{t}{2}}$.
(iii) Multiply both sides of the equation by the integrating factor: $e^{\frac{t}{2}}\left[y^{\prime}+\frac{1}{2} y\right]=e^{\frac{t}{2}} 2 \cos (t)$
(vi) Using product rule and implicit differentiation: $\frac{d}{d t}\left[e^{\frac{t}{2}} y\right]=2 e^{\frac{t}{2}} \cos (t)$
(v) Integrate both sides: $\int \frac{d}{d t}\left[e^{\frac{t}{2}} y d t\right]=\int 2 e^{\frac{t}{2}} \cos (t) d t$.

Now, using integration by parts, we can compute the right hand side integral and thus obtain the general solution $y(t)=\frac{4}{5}(2 \sin (t)+\cos (t))+\frac{C}{e^{\frac{t}{2}}}$
Finally, use the initial condition to find a particular solution:

$$
y(0)=-1=\frac{4}{5}+\frac{C}{e^{0}}=\frac{4}{5}+C \Longleftrightarrow C=-1-\frac{4}{5}=-\frac{9}{5}
$$

The solution is:

$$
y(t)=\frac{4}{5}(2 \sin (t)+\cos (t))-\frac{9}{5 e^{\frac{t}{2}}}
$$

28. Consider the initial value problem:

$$
y^{\prime}+\frac{2}{3} y=1-\frac{1}{2} t, \quad y(0)=y_{0}
$$

Let t_{0} be a value for which the solution $y(t)$ touches, but does not cross, the t-axis. Then we know from previous calculus that $y\left(t_{0}\right)=0, y^{\prime}\left(t_{0}\right)=0$ and $y^{\prime \prime}\left(t_{0}\right) \neq 0$ (the second relation holds since at t_{0} we have and inflection point and the last relation holds since the graph is either concave upward or downward). Using this information in our original differential equation we can solve for t_{0} as follow:

$$
0+\frac{2}{3} 0=1-\frac{1}{2} t_{0} \Longleftrightarrow t_{0}=2
$$

Hence, we have the additional information $y(2)=y^{\prime}(2)=0$. Now we can solve the D.E.

The equation $y^{\prime}+\frac{2}{3} y=1-\frac{1}{2} t$ is a first order, linear equation. We solve this by integrating factor:
(i) The equation is already in the desired form $y^{\prime}+\frac{2}{3} y=1-\frac{1}{2} t$, with 1 as the coefficient of y^{\prime}.
(ii) Integrating factor: since $p(t)=\frac{2}{3}$ we get $\mu(t)=e^{\int p(t) d t}=e^{\int \frac{2}{3} d t}=e^{\frac{2}{3} t}$.
(iii) Multiply both sides of the equation by the integrating factor: $e^{\frac{2}{3} t}\left[y^{\prime}+\frac{2}{3} y\right]=e^{\frac{2}{3} t}\left[1-\frac{1}{2} t\right]$
(vi) Using product rule and implicit differentiation: $\frac{d}{d t}\left[e^{\frac{2}{3} t} y\right]=e^{\frac{2}{3} t}\left[1-\frac{1}{2} t\right]$
(v) Integrate both sides: $\int \frac{d}{d t}\left[e^{\frac{2}{3} t} y\right] d t=\int e^{\frac{2}{3} t}\left[1-\frac{1}{2} t\right] d t$.

Now, using integration by parts, setting $u=t \Longrightarrow d u=d t ; v=e^{\frac{2}{3} t} \Longrightarrow d v=\frac{2}{3} e^{\frac{2}{3} t}$, we can compute the right hand side integral and thus obtain $\int e^{\frac{2}{3} t}\left[1-\frac{1}{2} t\right] d t=\frac{-3}{8} e^{\frac{2}{3} t}(2 t-7)+C$
The general solution is $y(t)=\frac{\frac{-3}{8} e^{\frac{2}{3} t}(2 t-7)+C}{e^{\frac{2}{3} t}}$. Now we need to solve for y_{0}. From the data of the problem we kwon that

$$
y(0)=y_{0}=\frac{-3}{8}(-7)+C \Longleftrightarrow C=y_{0}-\frac{21}{8}
$$

We can rewrite our D.E. as

$$
y(t)=\frac{\frac{-3}{8} e^{\frac{2}{3} t}(2 t-7)+\left(y_{0}-\frac{21}{8}\right)}{e^{\frac{2}{3} t}}
$$

Finally, using the fact that $y(2)=0$ we can solve for y_{0} :

$$
y(2)=0=\frac{\frac{9}{\frac{9}{}} e^{\frac{4}{3}}-\frac{21}{8}+y_{0}}{e^{\frac{4}{3}}} \Longrightarrow y_{0}=\frac{21-9 e^{\frac{4}{3}}}{8} \approx-1.642876
$$

30. Consider the initial value problem:

$$
y^{\prime}-y=1+3 \sin (t), \quad y(0)=y_{0}
$$

We want to find y_{0} such that the solution to the D.E. remains finite as $t \rightarrow \infty$. First we need to solve this equation. This is a first order, linear equation. We solve this by integrating factor:
(i) The equation is already in the desired form $y^{\prime}-y=1+3 \sin (t)$, with 1 as the coefficient of y^{\prime}.
(ii) Integrating factor: since $p(t)=-1$ we get $\mu(t)=e^{\int p(t) d t}=e^{\int-1 d t}=e^{-t}$.
(iii) Multiply both sides of the equation by the integrating factor: $e^{-t}\left[y^{\prime}-y\right]=e^{-t}[1+3 \sin (t)]$
(vi) Using product rule and implicit differentiation: $\frac{d}{d t}\left[e^{-t} y\right]=e^{-t}+3 e^{-t} \sin (t)$
(v) Integrate both sides: $\int \frac{d}{d t}\left[e^{-t} y\right] d t=\int\left(e^{-t}+3 e^{-t} \sin (t)\right) d t$.

Now, using integration by parts, setting $u=\sin (t) \Longrightarrow d u=\cos (t) d t ; v=e^{-t} \Longrightarrow d v=-e^{-t}$, we can compute the right hand side integral and thus obtain

$$
\int\left(e^{-t}+3 e^{-t} \sin (t)\right) d t=-e^{-t}-\frac{3}{2} e^{-t}(\sin (t)+\cos (t))+C
$$

And so the general solution is:

$$
y(t)=C e^{t}-\frac{3}{2}(\sin (t)+\cos (t))-1
$$

Plugging the value for $t=0$ and solving for C :

$$
y(0)=y_{0}=C-1-\frac{3}{2}=C-\frac{5}{2} \Longleftrightarrow C=y_{0}+\frac{5}{2}
$$

The particular solution is:

$$
y(t)=\left(y_{0}+\frac{5}{2}\right) e^{t}-\frac{3}{2}(\sin (t)+\cos (t))-1
$$

Since we have a linear factor of e^{t}, the only way for this function to remain positive is if we set $y_{0}=-\frac{5}{2}$, so that we make null the term involving e^{t}, i.e., the function

$$
y(t)=-\frac{3}{2}(\sin (t)+\cos (t))-1
$$

will remain finite at t goes to infinity.

