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One cannot express the indefinite integral

/e_$2dx

in terms of elementary functions, but one can prove using polar coordinates
that

(1) /Ooo e dy = \f

Similarly, one cannot compute indefinite integrals

/ cos(a?)da, / sin(22)dz,

but one can in fact determine the values of the definite integrals

) /0 ~ cos(z?)dz, /0 ~ sin(z?)dz,

For this we will use the following result:

Theorem 1. If F = (Fy, I%) is a C' vector field on R? then the following
are eqivalent:
i) F is a gradient field (that is F = NV f for some scalar C? function f);

it) curl F = 0;
m‘)@ 0F,
0 Ox

Proof. We can easily prove that i)=-ii)<iii), so it remains to show the im-
plication iii)=-1). To do this we have to solve (in f) the system of equations

of

or 11
3) o
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Integrating the first equation with respect to x we see that the solution must
be of the form

flz,y) = /Oz Fi(s,y)dt + c(y)
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for some function ¢(y). Differentiating this with respect to y and using iii)

we will get
of T o ,
—(x,y) = —(S,y) +c¢
ay( y) oy (s,9) +c(y)
T OFy

= 67(573/) +C/(y)
0 X
= Fy(x,y) — F2(0,y) + ¢ (y),

where the last equality follows from the fundamental theorem of calculus.
We see that f satisfies the second equation in (3) if

C/(y) = FQ(Oa y)
We may thus choose

dwzﬁmmwﬁ

0
and therefore

() flaa) = [ RO+ [ R
solves (3). O

Remark. The left-hand side of (4) can be also written as

/F-ds,
P

where p is the following path

(z,y)
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In fact, once we know that F' is a gradient field, by independence of paths
we have

f(x,y)Z/deS

for any path p starting at the origin and with the endpoint at (z,y).

To compute the integrals (2) we will make use of the following functions

u(z,y) = V'~ cos(2zy)

—T

v(z,y) = —ey’ sin(2zy).

(In fact, u + v = e_ZQ, where z = = + iy, if one writes this in terms of
complex numbers.) We can easily check that u and v satisfy the following

Cauchy-Riemann equations:

ou_ o0
or Oy

ou_ v
oy Oz’

Therefore, by Theorem 1 we get two gradient fields
F = (v,u), G=(u,—v).

Note that we cannot find a formula for potentials of these vector fields in
terms of elementary functions, we just know that they exist.
For R > 0 let us define the paths ¢y, ca, c3 as follows

C3




This means that we can parametrize them as follows
ci(t) = (t,0), 0<t<R,
co(t) =(R,t), 0<t<R,
cs(t) = (t,t), 0<t<R.

By independence of paths for gradient fields

(5) /F-ds-/F-ds—i—/ F -ds
c3 C1 c2

(6) /G-d.s:/ G-d8+/ G - ds.
c3 c1 [

We can compute that

(7) /CIF-ds:Ll(vdx—l—udy):O,

since v = 0 and dy = 0 along c;1. Further, since dz = 0,

R
/ F.ds= / el cos(2Rt) dt.
Cc2 0
2

R R -R
< / etQ_Rth < / eRt_R2dt = IL
0 0 R

We can estimate

/F-ds
c2

and thus

(8) lim F-ds=0.
R—o0 ca2

Finally,

R
/ F.-ds= / (—sin(2t?) + cos(2t?)) dt.
C3 0
Combining this with (5), (7) and (8) we will get

(9) lim <— /ORsin(2t2)dt+/ORCOS(QtQ)dt> =0.

R—o0

On the other hand, working out the similar integrals for G we willl obtain

R 2
/G-ds:/ e Udt,
C1 0

lim G- -ds=0,

R—o0 ca

and
R
0

/CSG.ds:/ (sin(2£2) + cos(2t2)) dt.



Combining this with (6) and (1)
R R

lim </ sin(2t2)dt+/ cos(2t2)dt> = \g?
0 0

R—o0

Therefore by (9) both limits exist and

o0 o0
/ cos(2t?)dt :/ sin(2t?)dt =
0 0
Using the substitution x = V2t we eventually obtain

/ cos(z?)dx :/ sin(z?)dt = \/?
0 0

-[%



