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One cannot express the indefinite integral
Z

e

�x

2
dx

in terms of elementary functions, but one can prove using polar coordinates

that

(1)

Z 1

0
e

�x

2
dx =

p
⇡

2
.

Similarly, one cannot compute indefinite integrals
Z

cos(x2)dx,

Z
sin(x2)dx,

but one can in fact determine the values of the definite integrals

(2)

Z 1

0
cos(x2)dx,

Z 1

0
sin(x2)dx,

For this we will use the following result:

Theorem 1. If F = (F1, F2) is a C

1
vector field on R2

then the following

are eqivalent:

i) F is a gradient field (that is F = rf for some scalar C

2
function f);

ii) curlF = 0;

iii)

@F1

@y

=
@F2

@x

.

Proof. We can easily prove that i))ii),iii), so it remains to show the im-

plication iii))i). To do this we have to solve (in f) the system of equations

(3)

8
>>><

>>>:

@f

@x

= F1

@f

@y

= F2.

Integrating the first equation with respect to x we see that the solution must

be of the form

f(x, y) =

Z
x

0
F1(s, y) dt+ c(y)

1



2

for some function c(y). Di↵erentiating this with respect to y and using iii)

we will get

@f

@y

(x, y) =

Z
x

0

@F1

@y

(s, y) + c

0(y)

=

Z
x

0

@F2

@x

(s, y) + c

0(y)

= F2(x, y)� F2(0, y) + c

0(y),

where the last equality follows from the fundamental theorem of calculus.

We see that f satisfies the second equation in (3) if

c

0(y) = F2(0, y).

We may thus choose

c(y) =

Z
y

0
F2(0, t) dt

and therefore

(4) f(x, y) =

Z
y

0
F2(0, t) dt+

Z
x

0
F1(s, y) dt

solves (3). ⇤

Remark. The left-hand side of (4) can be also written as
Z

p
F · ds,

where p is the following path

-

6

6

-

r

r r(x, y)
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In fact, once we know that F is a gradient field, by independence of paths

we have

f(x, y) =

Z

p
F · ds

for any path p starting at the origin and with the endpoint at (x, y).

To compute the integrals (2) we will make use of the following functions

u(x, y) = e

y

2�x

2
cos(2xy)

v(x, y) = �e

y

2�x

2
sin(2xy).

(In fact, u + iv = e

�z

2
, where z = x + iy, if one writes this in terms of

complex numbers.) We can easily check that u and v satisfy the following

Cauchy-Riemann equations:
8
>>>><

>>>>:

@u

@x

=
@v

@y

@u

@y

= �@v

@x

.

Therefore, by Theorem 1 we get two gradient fields

F = (v, u), G = (u,�v).

Note that we cannot find a formula for potentials of these vector fields in

terms of elementary functions, we just know that they exist.

For R > 0 let us define the paths c1, c2, c3 as follows
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This means that we can parametrize them as follows

c1(t) = (t, 0), 0  t  R,

c2(t) = (R, t), 0  t  R,

c3(t) = (t, t), 0  t  R.

By independence of paths for gradient fields

(5)

Z

c3

F · ds =
Z

c1

F · ds+
Z

c2

F · ds

and

(6)

Z

c3

G · ds =
Z

c1

G · ds+
Z

c2

G · ds.

We can compute that

(7)

Z

c1

F · ds =
Z

c1

(v dx+ u dy) = 0,

since v = 0 and dy = 0 along c1. Further, since dx = 0,
Z

c2

F · ds =
Z

R

0
e

t

2�R

2
cos(2Rt) dt.

We can estimate
����
Z

c2

F · ds
���� 

Z
R

0
e

t

2�R

2
dt 

Z
R

0
e

Rt�R

2
dt =

1� e

�R

2

R

and thus

(8) lim
R!1

Z

c2

F · ds = 0.

Finally, Z

c3

F · ds =
Z

R

0

�
� sin(2t2) + cos(2t2)

�
dt.

Combining this with (5), (7) and (8) we will get

(9) lim
R!1

✓
�
Z

R

0
sin(2t2)dt+

Z
R

0
cos(2t2)dt

◆
= 0.

On the other hand, working out the similar integrals for G we willl obtain
Z

c1

G · ds =
Z

R

0
e

�t

2
dt,

lim
R!1

Z

c2

G · ds = 0,

and Z

c3

G · ds =
Z

R

0

�
sin(2t2) + cos(2t2)

�
dt.
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Combining this with (6) and (1)

lim
R!1

✓Z
R

0
sin(2t2)dt+

Z
R

0
cos(2t2)dt

◆
=

p
⇡

2
.

Therefore by (9) both limits exist and
Z 1

0
cos(2t2)dt =

Z 1

0
sin(2t2)dt =

p
⇡

4
.

Using the substitution x =
p
2t we eventually obtain

Z 1

0
cos(x2)dx =

Z 1

0
sin(x2)dt =

p
2⇡

8
.


