Extra Lecture, M312, Section 30353
 September 16, 2013

Zbigniew Błocki

One cannot express the indefinite integral

$$
\int e^{-x^{2}} d x
$$

in terms of elementary functions, but one can prove using polar coordinates that

$$
\begin{equation*}
\int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2} \tag{1}
\end{equation*}
$$

Similarly, one cannot compute indefinite integrals

$$
\int \cos \left(x^{2}\right) d x, \quad \int \sin \left(x^{2}\right) d x
$$

but one can in fact determine the values of the definite integrals

$$
\begin{equation*}
\int_{0}^{\infty} \cos \left(x^{2}\right) d x, \quad \int_{0}^{\infty} \sin \left(x^{2}\right) d x \tag{2}
\end{equation*}
$$

For this we will use the following result:
Theorem 1. If $\mathbf{F}=\left(F_{1}, F_{2}\right)$ is a C^{1} vector field on \mathbb{R}^{2} then the following are eqivalent:
i) \mathbf{F} is a gradient field (that is $F=\nabla f$ for some scalar C^{2} function f);
ii) $\operatorname{curl} \mathbf{F}=0$;
iii) $\frac{\partial F_{1}}{\partial y}=\frac{\partial F_{2}}{\partial x}$.

Proof. We can easily prove that i$) \Rightarrow \mathrm{ii}) \Leftrightarrow$ iii), so it remains to show the implication iii) $\Rightarrow \mathrm{i}$). To do this we have to solve (in f) the system of equations

$$
\left\{\begin{array}{l}
\frac{\partial f}{\partial x}=F_{1} \tag{3}\\
\frac{\partial f}{\partial y}=F_{2}
\end{array}\right.
$$

Integrating the first equation with respect to x we see that the solution must be of the form

$$
f(x, y)=\int_{0}^{x} F_{1}(s, y) d t+c(y)
$$

for some function $c(y)$. Differentiating this with respect to y and using iii) we will get

$$
\begin{aligned}
\frac{\partial f}{\partial y}(x, y) & =\int_{0}^{x} \frac{\partial F_{1}}{\partial y}(s, y)+c^{\prime}(y) \\
& =\int_{0}^{x} \frac{\partial F_{2}}{\partial x}(s, y)+c^{\prime}(y) \\
& =F_{2}(x, y)-F_{2}(0, y)+c^{\prime}(y)
\end{aligned}
$$

where the last equality follows from the fundamental theorem of calculus. We see that f satisfies the second equation in (3) if

$$
c^{\prime}(y)=F_{2}(0, y) .
$$

We may thus choose

$$
c(y)=\int_{0}^{y} F_{2}(0, t) d t
$$

and therefore

$$
\begin{equation*}
f(x, y)=\int_{0}^{y} F_{2}(0, t) d t+\int_{0}^{x} F_{1}(s, y) d t \tag{4}
\end{equation*}
$$

solves (3).
Remark. The left-hand side of (4) can be also written as

$$
\int_{\mathbf{p}} \mathbf{F} \cdot d s
$$

where \mathbf{p} is the following path

In fact, once we know that F is a gradient field, by independence of paths we have

$$
f(x, y)=\int_{\mathbf{p}} \mathbf{F} \cdot d s
$$

for any path \mathbf{p} starting at the origin and with the endpoint at (x, y).

To compute the integrals (2) we will make use of the following functions

$$
\begin{aligned}
& u(x, y)=e^{y^{2}-x^{2}} \cos (2 x y) \\
& v(x, y)=-e^{y^{2}-x^{2}} \sin (2 x y) .
\end{aligned}
$$

(In fact, $u+i v=e^{-z^{2}}$, where $z=x+i y$, if one writes this in terms of complex numbers.) We can easily check that u and v satisfy the following Cauchy-Riemann equations:

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \\
\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} .
\end{array}\right.
$$

Therefore, by Theorem 1 we get two gradient fields

$$
\mathbf{F}=(v, u), \quad \mathbf{G}=(u,-v) .
$$

Note that we cannot find a formula for potentials of these vector fields in terms of elementary functions, we just know that they exist.

For $R>0$ let us define the paths $\mathbf{c}_{\mathbf{1}}, \mathbf{c}_{\mathbf{2}}, \mathbf{c}_{\mathbf{3}}$ as follows

This means that we can parametrize them as follows

$$
\begin{array}{ll}
\mathbf{c}_{1}(t)=(t, 0), & 0 \leq t \leq R, \\
\mathbf{c}_{2}(t)=(R, t), & 0 \leq t \leq R, \\
\mathbf{c}_{3}(t)=(t, t), & 0 \leq t \leq R .
\end{array}
$$

By independence of paths for gradient fields

$$
\begin{equation*}
\int_{\mathbf{c}_{3}} \mathbf{F} \cdot d s=\int_{\mathbf{c}_{\mathbf{1}}} \mathbf{F} \cdot d s+\int_{\mathbf{c}_{\mathbf{2}}} \mathbf{F} \cdot d s \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\mathbf{c}_{3}} \mathbf{G} \cdot d s=\int_{\mathbf{c}_{1}} \mathbf{G} \cdot d s+\int_{\mathbf{c}_{2}} \mathbf{G} \cdot d s . \tag{6}
\end{equation*}
$$

We can compute that

$$
\begin{equation*}
\int_{\mathbf{c}_{\mathbf{1}}} \mathbf{F} \cdot d s=\int_{\mathbf{c}_{\mathbf{1}}}(v d x+u d y)=0 \tag{7}
\end{equation*}
$$

since $v=0$ and $d y=0$ along $\mathbf{c}_{\mathbf{1}}$. Further, since $d x=0$,

$$
\int_{\mathbf{c}_{\mathbf{2}}} \mathbf{F} \cdot d s=\int_{0}^{R} e^{t^{2}-R^{2}} \cos (2 R t) d t
$$

We can estimate

$$
\left|\int_{\mathbf{c}_{\mathbf{2}}} \mathbf{F} \cdot d s\right| \leq \int_{0}^{R} e^{t^{2}-R^{2}} d t \leq \int_{0}^{R} e^{R t-R^{2}} d t=\frac{1-e^{-R^{2}}}{R}
$$

and thus

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \int_{\mathbf{c}_{\mathbf{2}}} \mathbf{F} \cdot d s=0 \tag{8}
\end{equation*}
$$

Finally,

$$
\int_{\mathbf{c}_{\mathbf{3}}} \mathbf{F} \cdot d s=\int_{0}^{R}\left(-\sin \left(2 t^{2}\right)+\cos \left(2 t^{2}\right)\right) d t .
$$

Combining this with (5), (7) and (8) we will get

$$
\begin{equation*}
\lim _{R \rightarrow \infty}\left(-\int_{0}^{R} \sin \left(2 t^{2}\right) d t+\int_{0}^{R} \cos \left(2 t^{2}\right) d t\right)=0 \tag{9}
\end{equation*}
$$

On the other hand, working out the similar integrals for \mathbf{G} we will obtain

$$
\begin{gathered}
\int_{\mathbf{c}_{\mathbf{1}}} \mathbf{G} \cdot d s=\int_{0}^{R} e^{-t^{2}} d t, \\
\lim _{R \rightarrow \infty} \int_{\mathbf{c}_{\mathbf{2}}} \mathbf{G} \cdot d s=0,
\end{gathered}
$$

and

$$
\int_{\mathbf{c}_{3}} \mathbf{G} \cdot d s=\int_{0}^{R}\left(\sin \left(2 t^{2}\right)+\cos \left(2 t^{2}\right)\right) d t .
$$

Combining this with (6) and (1)

$$
\lim _{R \rightarrow \infty}\left(\int_{0}^{R} \sin \left(2 t^{2}\right) d t+\int_{0}^{R} \cos \left(2 t^{2}\right) d t\right)=\frac{\sqrt{\pi}}{2} .
$$

Therefore by (9) both limits exist and

$$
\int_{0}^{\infty} \cos \left(2 t^{2}\right) d t=\int_{0}^{\infty} \sin \left(2 t^{2}\right) d t=\frac{\sqrt{\pi}}{4} .
$$

Using the substitution $x=\sqrt{2} t$ we eventually obtain

$$
\int_{0}^{\infty} \cos \left(x^{2}\right) d x=\int_{0}^{\infty} \sin \left(x^{2}\right) d t=\frac{\sqrt{2 \pi}}{8} .
$$

