Homework 3 for M312, Section 30353

due Wednesday, September 18, 2013

1. $(10 \mathrm{pts})$ Prove the formula $\Delta(f g)=f \Delta g+2 \nabla f \cdot \nabla g+g \Delta f$.
2. (10 pts) Prove the formula $\operatorname{div}(f \nabla g-g \nabla f)=f \Delta g-g \Delta f$.
3. (10 pts) For $(x, y) \in \mathbb{R}^{2},(x, y) \neq(0,0)$, let $f(x, y)=\log \left(x^{2}+y^{2}\right)$. Compute Δf.
4. (10 pts) Show that for any $v, w \in \mathbb{R}^{3}$ one has $\sqrt{\|v\|^{2}\|w\|^{2}-(v \cdot w)^{2}}=\|v \times w\|$.
5. $(10 \mathrm{pts})$ Compute the curvature of the path $c(t)=\left(\cos t, \sin t, t^{2}\right)$ at arbitrary t.
6. (20 pts) Find an appriopriate parametrization for the curve which is the intersection of the surfaces $y=x$ and $z=x^{2}$ from the point $(-2,-2,4)$ and $(1,1,1)$. Find the total curvature of this curve.
7. (10 pts) Show that the work done by the gravitational vector field in \mathbb{R}^{3} centered at the origin (with $G=m=M=1$) as a particle moves from point p to point q depends only $\|p\|$ and $\|q\|$.
8. $(20 \mathrm{pts})$ Compute $\int_{c} \frac{x d x+y d y}{x^{2}+y^{2}}$, where $c(t)=\left(e^{t}, t^{2}\right), 0 \leq t \leq 1$.
