
Math 53 Worksheet Solutions- Minmax and Lagrange

1. Find the local maximum and minimum values as well as the saddle point(s) of the
function f(x, y) = ey(y2 − x2).

Solution. First we calculate the partial derivatives and set them equal to zero.

fx(x, y) = −2xey = 0, fy(x, y) = ey(y2 − x2) + 2yey = 0.

For the first equation, ey 6= 0, so we have x = 0. Plugging this in to the second
equation, we have

ey[y2 + 2y] = 0,

and since again ey 6= 0, we have y = 0 and y = −2. So our two critical points are (0, 0)
and (0,−2). We now must check what kind of critical points these are. To do this we
need the second and mixed partials,

fxx(x, y) = −2ey, fyy(x, y) = ey(y2 − x2 + 2y) + ey(2y + 2), fxy(x, y) = −2xey.

At the point (0, 0), we have

fxx(0, 0) = −2, fyy(0, 0) = 2, fxy(0, 0) = 0,

and so
D = fxx(0, 0)fyy(0, 0)− [fxy(0, 0)]2 = −4 < 0,

and since fxx(0, 0) < 0, we know that f has a local maximum at (0,0) by the second
derivative test. At the point (0,−2), we have

fxx(0,−2) = −2e−2, fyy(0,−2) = −2e−2, fxy(0,−2) = 0,

and so
D = fxx(0,−2)fyy(0,−2)− [fxy(0,−2)]2 = 4 > 0,

so f has a saddle point at (0,−2).

2. Find the absolute maximum and minimum values of f(x, y) = 2x3 + y4 on the set
D = {(x, y)|x2 + y2 ≤ 1}.

Solution. Recall the method for find absolute maxima and minima:

1. Find the critical points of f . No second derivative test is needed.

2. Find the values of f at the function’s critical points.

3. Find the extreme values of f on the boundary of the region in question. (Don’t
forget endpoints!)

4. The largest value from (2) and (3) is the maximum; the smallest is the minimum.
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With these in mind, we’re ready to attack the problem. So let’s find the critical points
by taking partials.

fx(x, y) = 6x2 = 0, fy(x, y) = 4y3 = 0,

so (x, y) = (0, 0) is the only critical point. And note that f(0, 0) = 0. Now we must
look at the boundary, the circle x2 + y2 = 1. On this circle, y2 = 1− x2, so define

g(x) = f(x, y) = 2x3 + (1− x2)2,

and we will now find the extra of g(x) as in traditional one-variable calculus. First
calculate the derivative and set equal to zero.

g′(x) = 6x2 − 4x(1− x2) = 0 =⇒ 2x[2x2 + 3x− 2] = 0,

and so we have solutions x = 0 and

x =
−3±

√
9 + 16

2
=

1

2
, −2,

but we can ignore the solution x = −2 as we seek to find the extrema of g(x) on the
interval [−1, 1]. So we have

g(0) = 1, g(
1

2
) =

13

16
.

But we still need to check the endpoints of g, since we’re finding its extrema on a
closed interval! Note that

g(−1) = −2, g(1) = 2.

Looking back at all the values of f(x, y), it turns out that the maximum occurs at
(1, 0) and the minimum at (−1, 0). (Remember that g(−1) = f(−1, 0) and
g(1) = f(1, 0).)

3. Use Lagrange multipliers to find the maximum and minimum values of the function
f(x, y) = x2y2z2 subject to the constraint x2 + y2 + z2 = 1.

Solution. The function we’re finding extrema of is f(x, y, z) = x2y2z2 and the
constraint is g(x, y, z) = x2 + y2 + z2 − 1 = 0. Then

∇f(x, y, z) = 〈2xy2z2, 2yx2z2, 2zx2y2〉,

∇g(x, y, z) = 〈2x, 2y, 2z〉,
and so we must solve ∇f = λ∇g. This equation is actually the three equations,

2xy2z2 = 2xλ, 2yx2z2 = 2yλ, 2zx2y2 = 2xλ,

along with the constraint equation. Observe that if any one of x, y, z is zero. Then
f(x, y, z) = 0, according to the equation for f(x, y, z). If none of the variables is equal
to zero, then the equations become

λ = y2z2 = x2z2 = x2y2,
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and because x, y, z 6= 0, this indicates that x = y = z. The constraint is then
3x2 − 1 = 0, or x = 1√

3
. In this case,

f

(
1√
3
,

1√
3
,

1√
3

)
=

(
1√
3

)6

=
1

27
.

So the maximum occurs at (x, y, z) = ( 1√
3
, 1√

3
, 1√

3
) and the minimum occurs at any

point (x, y, z) where one of the variables is zero. The maximum value is 1
27

and the
minimum value is 0.

4. The plane x+ y + 2z = 2 intersects the paraboloid z = x2 + y2 in an ellipse. Find the
points on this ellipse that are nearest to and farthest from the origin.

Solution. The key here is that we needn’t worry about the equation of the ellipse
formed by the intersection; instead, we regard the two surfaces as constraints and seek
to minimize the distance from the origin. More precisely, we’ll minimize

f(x, y, z) = x2 + y2 + z2,

the distance squared, since this is minimized precisely when the distance is, and this
function is a lot easier to work with. You should remember this trick. The constraints
then are

g(x, y, z) = x+ y + 2z − 2 = 0, h(x, y, z) = x2 + y2 − z = 0.

We must now solve
∇f = λ∇g + µ∇h.

So we calculate,

∇f = 〈2x, 2y, 2z〉, ∇g = 〈1, 1, 2〉, ∇h = 〈2x, 2y,−1〉.

And the equation we must solve becomes three equations, in addition to the two
constraints.

2x = λ+ 2xµ, 2y = λ+ 2yµ, 2z = 2λ− µ.
Solving five equations for five unknowns can get tricky, to say the least. One idea is to
observe that the first two equations above are quite similar. In fact, we can write

2x− 2xµ = λ = 2y − 2yµ =⇒ (x− y)(2− 2µ) = 0.

And so either µ = 1 or x = y. First consider the case where µ = 1. Then from the first
equation above, λ = 0. Then z = −1

2
. But then

x2 + y2 = −1

2
,

and there are clearly no solutions in this case. So now assume x = y. At this point, we
can dispense with solving for λ and µ entirely. (Remember, nothing about the problem
insists we find their values!) So, going back to the original constraints, we have

x+ z = 1, 2x2 = z.
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These are much simpler! From the first equation, we get z = 1− x, so the second then
shows 2x2 + x− 1 = 0, and this factors as (2x− 1)(x+ 1) = 0, so x = 1

2
and x = −1

are solutions. So the two critical points are (1
2
, 1
2
, 1
2
) and (−1,−1, 2). Now we just

calculate that

f

(
1

2
,
1

2
,
1

2

)
=

3

4
, f(−1,−1, 2) = 6,

and these are the minimum and maximum values, respectively. (Where minimum
means the point closest to the origin and maximum is the point furthest.)

5. If the length of the diagonal of a rectangular box must be L, what is the largest
possible volume?

Solution. It’s not hard to see that if the side lengths are x, y, and z, then the length
of the diagonal L and the volume V satisfy

L2 = x2 + y2 + z2, V = xyz.

Now, we could use Lagrange multipliers to solve this problem, but let’s do it first
without such an advanced technique. To implement the constraint, we solve for z in
the first equation and get

z =
√
L2 − x2 − y2,

so that we can write
V (x, y) = xy

√
L2 − x2 − y2.

And now we just need to maximize V with the constraints x, y > 0 and x2 + y2 ≤ L2.
So, first we find the critical points.

Vx(x, y) = y
√
L2 − x2 − y2− x2y√

L2 − x2 − y2
, Vy(x, y) = x

√
L2 − x2 − y2− xy2√

L2 − x2 − y2
.

Setting the components equal to zero gives

1√
L2 − x2 − y2

[
L2 − 2x2 − y2

]
y = 0,

and
1√

L2 − x2 − y2
[
L2 − x2 − 2y2

]
x = 0.

Now x, y 6= 0, as noted above, so we must have

L2 − 2x2 − y2 = 0, L2 − x2 − 2y2 = 0.

Write the first equation as y2 = L2− 2x2 and substitute into the second. We then have

L2 − x2 − 2(L2 − 2x2) = 0,=⇒ 3x2 = L2,

and so x = L√
3
. Substituting this into the first equation, it follows that y = L√

3
. So the

maximum volume is obtained when

x = y = z =
L√
3
,
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and the volume then is

V =

(
L√
3

)3

=
L3

3
√

3
.

The problem is indeed easier with Lagrange. Here f(x, y, z) = xyz and
g(x, y, z) = x2 + y2 + z2 − L2 = 0. Then

∇f(x, y, z) = 〈yz, xz, xy〉, ∇g(x, y, z) = 〈2x, 2y, 2z〉,

and the equations are

yz = 2xλ, xz = 2yλ, xy = 2zλ.

Then
xyz = 2x2λ = 2y2λ = 2z2λ,

which we obtain by multiplying each equation by x, y, and z respectively. Thus either
λ = 0 or x = y = z, since x, y, z > 0. If λ = 0, then at least one of x, y, z is zero, which
cannot happen. So we must have x = y = z and, from the constraint equation, this
means we must have

x = y = z =
L√
3
.

Then, again, we find that

V =

(
L√
3

)3

=
L3

3
√

3
.
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