Math 53 Worksheet Solutions - Cross Products and Planes

1. Prove that $(\mathbf{a}-\mathbf{b}) \times(\mathbf{a}+\mathbf{b})=2(\mathbf{a} \times \mathbf{b})$.

Solution.

$$
\begin{aligned}
(\mathbf{a}-\mathbf{b}) \times(\mathbf{a}+\mathbf{b}) & =\mathbf{a} \times(\mathbf{a}+\mathbf{b})-\mathbf{b} \times(\mathbf{a}+\mathbf{b}) \\
& =\mathbf{a} \times \mathbf{a}+\mathbf{a} \times \mathbf{b}-\mathbf{b} \times \mathbf{a}-\mathbf{b} \times \mathbf{b} \\
& =\mathbf{a} \times \mathbf{b}+\mathbf{a} \times \mathbf{b} \\
& =2(\mathbf{a} \times \mathbf{b})
\end{aligned}
$$

2. Use the scalar triple product to determine whether the points $A(1,3,2), B(3,-1,6)$, $C(5,2,0)$, and $D(3,6,-4)$ lie in the same plane.

Solution. Set $\mathbf{a}=A B=\langle 2,-4,4\rangle, \mathbf{b}=A C=\langle 4,-1,-2\rangle$, and $\mathbf{c}=A D=\langle 2,3,-6\rangle$.
We need to know if this vectors lie in the same plane. As such, we take the scalar triple product.

$$
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\left|\begin{array}{ccc}
2 & -4 & 4 \\
4 & -1 & -2 \\
2 & 3 & -6
\end{array}\right|=0
$$

As the scalar triple product is zero, they are coplanar.
3. Find the distance from the point $(1,-2,4)$ to the plane $3 x+2 y+6 z=5$.

Solution. Use the formula from the book. $a=3, b=2, c=6, d=-5$, and $\left(x_{1}, y_{1}, z_{1}\right)=(1,-2,4)$. So

$$
D=\frac{|3(1)+2(-2)+6(4)-5|}{\sqrt{3^{2}+2^{2}+6^{2}}}=\frac{18}{7} .
$$

4. Give a geometric description of each family of planes.
(a) $x+y+z=c$
(b) $x+y+c z=1$
(c) $y \cos \theta+z \sin \theta=1$

Solution.

(a) Normal vector is $\mathbf{n}=\langle 1,1,1\rangle . x, y$, and z intercepts are all c. Draw a picture. Plane makes equilateral triangle in first octant $(c>0)$ or octant opposite the first $(c<0)$.
(b) Normal vector is $\mathbf{n}=\langle 1,1, c\rangle . x$ an y intercepts are 1 , but z intercept is $\frac{1}{c}$. As such, as c gets large, plane approaches the $x y$ plane.
(c) Normal vector is $\mathbf{n}=\langle 0, \cos \theta, \sin \theta\rangle$. Note that an obvious point on the plane is $(x, \cos \theta, \sin \theta)$ for any x. It follows that the family consists of planes tangent to the cylinder with radius 1 and with the x axis as its major axis.
5. If a, b, and c are all not 0 , show that the equation $a x+b y+c z+d=0$ represents a plane and $\langle a, b, c\rangle$ is a normal vector to the plane.

Solution. Assume $a \neq 0$. The proof for the other cases is similar. Then we can simply move d into the x term, as in

$$
a\left(x-\frac{d}{a}\right)+b y+c z=0,
$$

and this now has the form

$$
\langle a, b, c\rangle \cdot\left\langle x-\frac{d}{a}, y, z\right\rangle=0
$$

which is the vector form of a plane.
6. Find the distance between the skew lines with parametric equations $x=1+t$, $y=1+6 t, z=2 t$, and $x=1+2 s, y=5+15 s, z=-2+6 s$.

Solution. The direction vectors of the lines are $\mathbf{v}_{\mathbf{1}}=\langle 1,6,2\rangle$ and $\mathbf{v}_{\mathbf{2}}=\langle 2,15,6\rangle$. So $\mathbf{n}=\mathbf{v}_{\mathbf{1}} \times \mathbf{v}_{\mathbf{2}}$ should be perpendicular to both lines. We calculate

$$
\mathbf{n}=\mathbf{v}_{\mathbf{1}} \times \mathbf{v}_{\mathbf{2}}=\langle 6,-2,3\rangle
$$

Draw a picture of what this looks like. Now pick points on the lines, $P_{1}=(1,1,0)$ and $P_{2}=(1,5,-2)$ will do. (Get this by setting $t=s=0$.) Form the vector connecting these points on the lines

$$
\mathbf{b}=\langle 0,4,-2\rangle .
$$

Then, by a geometry argument or by scalar projection, it follows that

$$
D=\frac{|\mathbf{b} \cdot \mathbf{n}|}{|\mathbf{n}|}=\frac{14}{\sqrt{6^{2}+(-2)^{2}+3^{2}}}=\frac{14}{7}=2 .
$$

7. Find equations of the planes that are parallel to the plane $x+2 y-2 z=1$ and two units away from it.

Solution. We could use the next problem to do this easily, but there is an easier way. The normal vector to the plane is $\mathbf{n}=\langle 1,2,-2\rangle$. A vector in the same direction as the normal vector but with length 2 (check this) is

$$
\mathbf{v}=\frac{\mathbf{n}}{|\mathbf{n}|}(2)=\left\langle\frac{2}{3}, \frac{4}{3},-\frac{4}{3}\right\rangle .
$$

A point on the plane is $P_{0}=(1,1,1)$. The planes that are parallel and two units away will have identical normal vectors, but different points. Moving 2 units in the direction (or antidirection) of the normal vector from point P_{0} will take us to new points

$$
P_{1}=P_{0}+\mathbf{v}=\left(\frac{5}{3}, \frac{7}{3},-\frac{1}{3}\right), \quad P_{2}=P_{0}-\mathbf{v}=\left(\frac{1}{3},-\frac{1}{3}, \frac{7}{3}\right) .
$$

The new equations of the planes are then
$(1)\left(x-\frac{5}{3}\right)+2\left(y-\frac{7}{3}\right)+(-2)\left(z+\frac{1}{3}\right)=0, \quad(1)\left(x-\frac{1}{3}\right)+(2)\left(y+\frac{1}{3}\right)+(-2)\left(z-\frac{7}{3}\right)=0$.
These can be rewritten

$$
x+2 y-2 z=7, \quad x+2 y-2 z=-5 .
$$

8. Show that the distance between the parallel planes $a x+b y+c z+d_{1}=0$ and $a x+b y+c z+d_{2}=0$ is

$$
D=\frac{\left|d_{1}-d_{2}\right|}{\sqrt{a^{2}+b^{2}+c^{2}}} .
$$

Solution. Pick a point on the second plane, and call it $P_{1}=\left(x_{1}, y_{1}, z_{1}\right)$. Then $a x_{1}+b y_{1}+c z_{1}+d_{2}=0$ and in fact

$$
a x_{1}+b y_{1}+c z_{1}=-d_{2} .
$$

The distance between the first plane and this point is given by the formula in the book, so

$$
D=\frac{\left|a x_{1}+b y_{1}+c z_{1}+d_{1}\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}=\frac{\left|-d_{2}+d_{1}\right|}{\sqrt{a^{2}+b^{2}+c^{2}}},
$$

and this is the formula.
9. If $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3} are noncoplanar vectors, let

$$
\begin{gathered}
\mathbf{k}_{1}=\frac{\mathbf{v}_{2} \times \mathbf{v}_{3}}{\mathbf{v}_{1} \cdot\left(\mathbf{v}_{2} \times \mathbf{v}_{3}\right)}, \quad \mathbf{k}_{2}=\frac{\mathbf{v}_{3} \times \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot\left(\mathbf{v}_{2} \times \mathbf{v}_{3}\right)} \\
\mathbf{k}_{3}=\frac{\mathbf{v}_{1} \times \mathbf{v}_{2}}{\mathbf{v}_{1} \cdot\left(\mathbf{v}_{2} \times \mathbf{v}_{3}\right)}
\end{gathered}
$$

(These vectors occur in the study of crystallography. Vectors of the norm $n_{1} \mathbf{v}_{1}+n_{2} \mathbf{v}_{2}+n_{3} \mathbf{v}_{3}$, where each n_{i} is an integer, form a lattice for a crystal. Vectors written similarly in terms of $\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}$ form the reciprocal lattice.)
(a) Show that \mathbf{k}_{i} is perpendicular to \mathbf{v}_{j} if $i \neq j$.
(b) Show that $\mathbf{k}_{i} \cdot \mathbf{v}_{i}=1$ for $i=1,2,3$.
(c) Show that $\mathbf{k}_{1} \cdot\left(\mathbf{k}_{2} \times \mathbf{k}_{3}\right)=\frac{1}{\mathbf{v}_{1} \cdot\left(\mathbf{v}_{2} \times \mathbf{v}_{3}\right)}$.

Solution.

(a) For any vectors \mathbf{a} and \mathbf{b} the scalar triple products

$$
\mathbf{a} \cdot(\mathbf{a} \times \mathbf{b})=0, \quad \mathbf{a} \cdot(\mathbf{b} \times \mathbf{a})=0
$$

so it follows that \mathbf{k}_{i} is perpendicular to \mathbf{v}_{j} when $i \neq j$.
(b) Evaluate each one and use part (5) of Theorem 8.
(c) Perform the calculation using the properties of the cross product in Theorem 8.

