Section 14.1 Vector Functions and Space Curves

"Functions whose range does not consists of numbers" A bulk of elementary mathematics involves the study of functions "rules that assign to a given input a particular output". In nearly all mathematics, these functions have had as their inputs and outputs real numbers (like $f(x)=x^{2}$). In this section, we introduce the idea of a vector function - a function whose outputs are vectors.

1. Vector Function Basics

We start with the formal definition of a vector function.
Definition 1.1. A vector-valued function, or a vector function, is a function whose domain is a set of real numbers and whose range is a set of vectors.

We have already seen lots of examples of vector functions.
Example 1.2. Let

$$
\vec{r}(t)=(2+2 t) \vec{i}+(2+2 t) \vec{j}+(2-t) \vec{k} .
$$

Recall that this is a vector equation for a line which passes through the point $(2,2,2)$ and points in the direction of $2 \vec{i}+2 \vec{j}-\vec{k}$. It is also a vector function with independent variable t.

In general, a vector function in 3-space can be written in component form just like equations for lines i.e. any vector function is of the form $\vec{r}(t)=f(t) \vec{i}+g(t) \vec{j}+h(t) \vec{k}$ where $f(t), g(t)$, and $h(t)$ are scalar functions of t. We call these function the component functions of the vector function $\vec{r}(t)$. As with regular functions, the usual definitions apply such as domain, range etc. We can also define other notions such as limits as continuity in of a vector function in terms of the component functions.

Definition 1.3. If $\vec{r}(t)=f(t) \vec{i}+g(t) \vec{j}+h(t) \vec{k}$, then

$$
\lim _{t \rightarrow a} \vec{r}(t)=\lim _{t \rightarrow a} f(t) \vec{i}+\lim _{t \rightarrow a} g(t) \vec{j}+\lim _{t \rightarrow a} h(t) \vec{k}
$$

provided this limit exists.
Definition 1.4. We say $\vec{r}(t)$ is continuous at $t=a$ if

$$
\lim _{t \rightarrow a} \vec{r}(t)=\vec{r}(a) .
$$

We illustrate with a couple of examples.

Example 1.5. Suppose that

$$
\vec{r}(t)=\frac{\sin (t)}{t} \vec{i}+\sqrt{(2-t)} \vec{j}+\ln (t+1) \vec{k}
$$

Answer the following questions.
(i) What is the domain of $\vec{r}(t)$?

We must look at the domains of the component functions and take what is common to them all. The domain of the first is all real numbers but 0 , the domain of the second all numbers less than or equal to 2 and the domain of the third, all real numbers greater than -1 . Therefore, the domain will be $(-1,0) \cup(0,2]$.
(ii) Find the limit $\lim _{t \rightarrow 0} \vec{r}(t)$.

We find the limit of the component functions:

$$
\begin{gathered}
\lim _{t \rightarrow 0}\left(\frac{\sin (t)}{t} \vec{i}+\sqrt{(2-t)} \vec{j}+\ln (t+1) \vec{k}\right) \\
=\lim _{t \rightarrow 0} \frac{\sin (t)}{t} \vec{i}+\lim _{t \rightarrow 0} \sqrt{(2-t)} \vec{j}+\lim _{t \rightarrow 0} \ln (t+1) \vec{k}=\vec{i}+\sqrt{2} \vec{j} .
\end{gathered}
$$

(iii) Is $\vec{r}(t)$ continuous at $t=0$?

No $-\vec{r}(t)$ is not defined at $t=0$, so it could not possible be continuous at $t=0$.

2. Vector Functions and Space Curves

A space curve is a curve in space. There is a close connection between space curves and vector functions. Specifically, we can determine a vector function which traces along a space curve C (provided we put the tail of the vectors at the origin, so they are position vectors). Likewise, any vector function defines a space curve. This can be described as follows:

- Suppose C is a curve in space. Then we can determine parametric equations for C (equations which tell us the coordinates of a particle traveling along C at a given time t). Suppose $x=f(t), y=g(t)$ and $z=h(t)$ are parametric equations for C.
- Define a vector function $\vec{r}(t)=f(t) \vec{i}+g(t) \vec{j}+h(t) \vec{k}$ which we shall call a vector function of C. We claim that as t varies, the position vector $\vec{r}(t)$ traces out the curve C.
- To see this, observe that any point on C has coordinates $(f(t), g(t), h(t))$, and any position vector $\vec{r}(t)$ has head at the point $(f(t), g(t), h(t))$.
- Equivalently, if $\vec{r}(t)=f(t) \vec{i}+g(t) \vec{j}+h(t) \vec{k}$ is a vector function, then it traces out the curve C with parametric equations $(f(t), g(t), h(t))$.
We illustrate with some examples.
Example 2.1. Sketch the curve with vector equation $\vec{r}(t)=t^{2} \vec{i}+t^{4} \vec{j}$ in 2 -space.
Observe that we have $x=t^{2}$, and $y=t^{4}=x^{2}$, so this curve will be the right hand side of the parabola $y=x^{2}$ (WHY?).

Example 2.2. Use your last answer to sketch the curve $\vec{r}(t)=t^{2} \vec{i}+$ $t^{4} \vec{j}+t^{6} \vec{k}$ in 3 -space.

We know that the projection onto the $x y$-plane will travel along the curve $y=x^{2}$ in the first quadrant. Now note that $z=t^{6}$ just means it is always positive in the z-direction, goes to 0 at $t=0$ and gets large quickly. A graph will look like the following:

The method we used for the last example can be very helpful when trying to draw space curves - we project down to the $x y$-plane (or some other plane) and draw the 2-dimensional projection and then use that to draw the space curve. We look at a couple more examples.

Example 2.3. Find the vector equation for the line segment between $P(1,2,3)$ and $Q(2,3,1)$.

We have already done this in an earlier section: we take

$$
\vec{r}(t)=(1-t)(\vec{i}+2 \vec{j}+3 \vec{k})+t(2 \vec{i}+3 \vec{j}+\vec{k}) .
$$

Example 2.4. Find a vector function which represents the curve C of intersection of the cone $z=\sqrt{x^{2}+y^{2}}$ and the plane $z=1+y$ and then sketch this curve.
Since both equations are for z, we can substitute and eliminate: $\sqrt{x^{2}+y^{2}}=$ $1+y$, so $x^{2}+y^{2}=1+2 y+y^{2}$ giving $y=\left(x^{2}-1\right) / 2$. This means that all equations rely on x, so let $x=t$, so $y=\left(t^{2}-1\right) / 2$ and $z=\left(t^{2}+1\right) / 2$. The curve will look like the following:

Example 2.5. Suppose two particles are traveling in space, one along the curve $\vec{r}(t)=t \vec{i}+t^{2} \vec{j}+t^{3} \vec{k}$ and the other along $\vec{s}(t)=(1+2 t) \vec{i}+$ $(1+6 t) \vec{j}+(1+14 t) \vec{k}$. Do they ever collide? Do their paths intersect?

To collide, they must be at the same point at the same time i.e we must have $t=1+2 t, t^{2}=1+6 t$ and $t^{3}=1+14 t$. Solving the first equation, we have $t=-1$. However, substituting into the second equation, we get $1=(-1)^{2}=1-6=-5$, which is obviously not true, so these particles cannot collide.

To see if their paths intersect, we need to check if there exists s and t such that $s=1+2 t, s^{2}=1+6 t$ and $s^{3}=1+14 t$ i.e. they pass through the same point, but not necessarily at the same time. This would mean: $(1+2 t)^{2}=1+6 t$ and $(1+2 t)^{3}=1+14 t$. Solving further, we have $4 t^{2}+4 t+1=1+6 t$, so $4 t^{2}-2 t=0$ or $2 t(t-1)=0$ or $t=0$ or 1. Substituting into the last equation, $t=0$ is a solution, but not $t=1$. When $t=0$, we have $s=1$, so these cross paths at $(1,1,1)$.

Example 2.6. Describe the curve defined by the vector equation

$$
\vec{r}(t)=t \vec{i}+\sin (t) \vec{j}+\cos (t) \vec{k} .
$$

We can use similar techniques to our previous observations, but in this case, instead of projecting down onto the $x y$-plane, we project down onto the $y z$-plane. Note that in this plane, the parametric equations $y(t)$ and $z(t)$ trace out a circle. Therefore, when we include the parametric equation for the x-coordinate, the result will be a helix extending out in the x direction (since x simply increases linearly as t increases). It will look something like the following:

Example 2.7. Describe the curve defined by the vector equation

$$
\vec{r}(t)=t \vec{i}+t \sin (t) \vec{j}+t \cos (t) \vec{k}
$$

This is similar to the previous question. The effect of multiplying by t will do two things. First, as $|t|$ gets larger, the projection of the points in the $y z$-plane will start at $(0,0)$ and then gradually rotate around the origin as $|t|$ gets larger moving further away from the origin as $|t|$ grows. Second, if $t>0$, the motion will be counterclockwise, and if $t<0$, the motion will be clockwise. In particular, if a particle were to trace out this curve, it would stop at the origin and change directions. As before, when we include the parametric equation for the x-coordinate, the result will be a helix increasing in radius extending out in the x direction (since x simply increases linearly as t increases).

