Spring 2004 Math 253/501-503
 11 Three Dimensional Analytic Geometry and Vectors

11.2 Vectors and the Dot Product Tue, 20/Jan
(C)2004, Art Belmonte

Summary

VECTORS: Terms and concepts

- vector: A quantity having magnitude (length) and direction.
- Geometrically, an equivalence class of directed (hyper)line segments in n-D space having the same magnitude and direction (analogy: $\frac{1}{2}$ and $\frac{2}{4}$ are equivalent fractions). A particular member of this equivalence class has a point of application-the "tail" of the vector.
- Analytically, an ordered n-tuple of (real) numbers, called components or elements: $\mathbf{a}=\left[a_{1}, a_{2}, \ldots, a_{n}\right]$. While Stewart uses angle brackets $\langle\ldots\rangle$ to delimit vectors, most folks (other authors, MATLAB, TI-89) use square brackets; so shall we! We also write a as $\overrightarrow{\mathbf{a}}$.
- position vector: The distinguished member of the equivalence class that starts at the origin of n-D space.
- $\overrightarrow{A B}$: Vector from $A\left(a_{1}, \ldots, a_{n}\right)$ to $B\left(b_{1}, \ldots, b_{n}\right)$, realized as $\left[b_{1}-a_{1}, \ldots, b_{n}-a_{n}\right]$; i.e., end-start in each slot.
- magnitude: The length of a (real) vector $\mathbf{a}=\left[a_{1}, \ldots, a_{n}\right]$ is

$$
\|\mathbf{a}\|=\sqrt{\sum_{k=1}^{n} a_{k}^{2}}
$$

via repeated application of the Pythagorean Theorem. Thus

$$
\|\overrightarrow{A B}\|=\sqrt{\sum_{k=1}^{n}\left(b_{k}-a_{k}\right)^{2}}
$$

- zero vector: This is the n-D vector all of whose components are zero: $\mathbf{0}=[0,0, \ldots, 0]$. It has length zero and no specific direction.
- vector addition / vector sum: Add components slotwise.

$$
\mathbf{a}+\mathbf{b}=\left[a_{1}, \ldots, a_{n}\right]+\left[b_{1}, \ldots, b_{n}\right]=\left[a_{1}+b_{1}, \ldots, a_{n}+b_{n}\right]
$$

- Triangle Law / Parallelogram Law: The geometric (head-to-tail) interpretation of vector addition.
- scalar: a real number or symbol [more generally, a complex number or symbol or an element of a field]
- scalar multiplication: Given a scalar c and a vector a, the scalar multiple of c with \mathbf{a} is obtained by multiplying each component of \mathbf{a} by c.

$$
c \mathbf{a}=c\left[a_{1}, \ldots, a_{n}\right]=\left[c a_{1}, \ldots, c a_{n}\right]
$$

- vector subtraction / vector difference: Formally, $\mathbf{a}-\mathbf{b}=\mathbf{a}+(-1) \mathbf{b}$. Just subtract components slotwise.
$\mathbf{a}-\mathbf{b}=\left[a_{1}, \ldots, a_{n}\right]-\left[b_{1}, \ldots, b_{n}\right]=\left[a_{1}-b_{1}, \ldots, a_{n}-b_{n}\right]$
- standard basis vectors: In V_{n} (the set of all n - D vectors), these are the vectors $\mathbf{e}_{1}, \ldots \mathbf{e}_{n}$, where \mathbf{e}_{k} has a 1 in the $k^{\text {th }}$ slot and $n-1$ zeros in its other slots. In V_{3}, we have the following aliases for $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$, an orthonormal basis.

$$
\begin{aligned}
\mathbf{i} & =\mathbf{e}_{1}=[1,0,0] \\
\mathbf{j} & =\mathbf{e}_{2}=[0,1,0] \\
\mathbf{k} & =\mathbf{e}_{3}=[0,0,1]
\end{aligned}
$$

Note that we may write a given vector in terms of standard basis vectors. For example,

$$
\begin{aligned}
\mathbf{a} & =\left[a_{1}, a_{2}, a_{3}\right] \\
& =\left[a_{1}, 0,0\right]+\left[0, a_{2}, 0\right]+\left[0,0, a_{3}\right] \\
& =a_{1}[1,0,0]+a_{2}[0,1,0]+a_{3}[0,0,1] \\
& =a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}
\end{aligned}
$$

- unit vector: A vector whose length is 1 . Given a nonzero vector $\mathbf{a} \neq \mathbf{0}$, the unit vector in the direction of \mathbf{a} is \mathbf{a}-"hat."

$$
\hat{\mathbf{a}}=\frac{1}{\|\mathbf{a}\|} \mathbf{a}=\frac{\mathbf{a}}{\|\mathbf{a}\|}
$$

- resultant vector: The vector sum of several vectors. For example, the resultant force is the vector sum of several forces. Again, the resultant velocity is the vector sum of several velocities.

VECTORS: Properties

In the following, c and d are scalars; \mathbf{a} and \mathbf{b} are vectors.

1. $\mathbf{a}+\mathbf{b}=\mathbf{b}+\mathbf{a}$ (commutativity)
2. $\mathbf{a}+(\mathbf{b}+\mathbf{c})=(\mathbf{a}+\mathbf{b})+\mathbf{c}$ (associativity)
3. $\mathbf{a}+\mathbf{0}=\mathbf{a}$ (additive identity: the zero vector)
4. $\mathbf{a}+(-\mathbf{a})=\mathbf{0}$ (additive inverse of $\mathbf{a}:-\mathbf{a})$
5. $c(\mathbf{a}+\mathbf{b})=c \mathbf{a}+c \mathbf{b}$ (Scalar multiplication distributes over vector addition.)
6. $(c+d) \mathbf{a}=c \mathbf{a}+d \mathbf{a}$ (another instance of distributivity)
7. $(c d) \mathbf{a}=c(d \mathbf{a})$ (associativity of scalar multiples)
8. $1 \mathbf{a}=\mathbf{a}$

DOT PRODUCT: Definitions and facts

Let $\mathbf{a}=\left[a_{1}, \ldots, a_{n}\right]$ and $\mathbf{b}=\left[b_{1}, \ldots, b_{n}\right]$ be n-D vectors.

- dot product (math definition): $\mathbf{a} \cdot \mathbf{b}=\sum_{k=1}^{n} a_{k} b_{k}$
- dot product (physics definition): $\mathbf{a} \cdot \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta$, where θ is the angle between the vectors \mathbf{a} and \mathbf{b}; equivalent to math definition
- angle between nonzero vectors: $\theta=\cos ^{-1}\left(\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|\|\mathbf{b}\|}\right)$
- orthogonality: Vectors \mathbf{a} and \mathbf{b} are perpendicular if and only if $\mathbf{a} \cdot \mathbf{b}=0$.
- scalar projection of \mathbf{b} onto $\mathbf{a}: \operatorname{comp}_{\mathbf{a}} \mathbf{b}=\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|}$
- vector projection of \mathbf{b} onto $\mathbf{a}: \operatorname{proj}_{\mathbf{a}} \mathbf{b}=\left(\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|}\right) \frac{\mathbf{a}}{\|\mathbf{a}\|}$; i.e., the scalar projection times the unit vector in the direction of a; also known as the parallel projection
- orthogonal projection of \mathbf{b} onto $\mathbf{a}: \operatorname{orth}_{\mathbf{a}} \mathbf{b}=\mathbf{b}-\operatorname{proj}_{\mathbf{a}} \mathbf{b}$, whence \mathbf{b} is the vector sum of a vector parallel to \mathbf{a} and a vector perpendicular to a
- work: $W=\mathbf{F} \cdot \mathbf{d}=\|\mathbf{F}\|\|\mathbf{d}\| \cos \theta$, where \mathbf{F} is the (constant) force vector and \mathbf{d} is the displacement vector
- direction cosines: the components of $\hat{\mathbf{a}}=\frac{\mathbf{a}}{\|\mathbf{a}\|}$, the unit vector in the direction of \mathbf{a}
- direction angles: the function $\cos ^{-1}=\arccos$ mapped onto the direction cosine vector $\hat{\mathbf{a}}$; gives the angles said vector (and hence a itself) makes with the positive axes in \mathbb{R}^{n}

DOT PRODUCT: Properties

Here \mathbf{a}, \mathbf{b}, and \mathbf{c} are vectors and k is a scalar.

1. $\mathbf{a} \cdot \mathbf{a}=\|\mathbf{a}\|^{2}$
2. $\mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a}$ (commutativity)
3. $\mathbf{a} \cdot(\mathbf{b}+\mathbf{c})=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \cdot \mathbf{c}$ (The dot product distributes over vector addition.)
4. $(k \mathbf{a}) \cdot \mathbf{b}=k(\mathbf{a} \cdot \mathbf{b})=\mathbf{a} \cdot(k \mathbf{b})$ (Scalars roam freely across the dot product operation.)
5. $\mathbf{0} \cdot \mathbf{a}=0$ (The dot product of zero vector with any other vector is zero.)

Hand Examples

664/10

Let $\mathbf{a}=6 \mathbf{i}+\mathbf{k}$ and $\mathbf{b}=\mathbf{i}-2 \mathbf{j}+7 \mathbf{k}$. Find $\|\mathbf{a}\|, \mathbf{a}+\mathbf{b}, \mathbf{a}-\mathbf{b}, 2 \mathbf{a}$, and $3 \mathbf{a}+4 \mathbf{b}$.

Solution

Recall the discussion of standard basis vectors in the Summary.
Rewrite the vectors as $\mathbf{a}=[6,0,1]$ and $\mathbf{b}=[1,-2,7]$. (Make certain that you understand this.) We then have

$$
\begin{aligned}
\|\mathbf{a}\| & =\sqrt{6^{2}+0^{2}+1^{2}}=\sqrt{37} \\
\mathbf{a}+\mathbf{b} & =[7,-2,8] \\
\mathbf{a}-\mathbf{b} & =[5,2,-6] \\
2 \mathbf{a} & =[12,0,2] \\
3 \mathbf{a}+4 \mathbf{b} & =[18,0,3]+[4,-8,28]=[22,-8,31] .
\end{aligned}
$$

Compare this with the corresponding MATLAB example. (Also remind me to show you on a TI-89.)

664/14

Find the unit vector that has the same direction as $\mathbf{a}=2 \mathbf{i}-4 \mathbf{j}+7 \mathbf{k}$.

Solution

Rewrite \mathbf{a} as [2, -4, 7]. Then

$$
\hat{\mathbf{a}}=\frac{[2,-4,7]}{\sqrt{4+16+49}}=\left[\frac{2}{\sqrt{69}},-\frac{4}{\sqrt{69}}, \frac{7}{\sqrt{69}}\right]
$$

664/18

Given $\mathbf{a}=[-1,-2,-3]$ and $\mathbf{b}=[2,8,-6]$, find the dot product $\mathbf{a} \cdot \mathbf{b}$.

Solution

We have

$$
\mathbf{a} \cdot \mathbf{b}=(-1)(2)+(-2)(8)+(-3)(-6)=-2-16+18=0
$$

Therefore, \mathbf{a} and \mathbf{b} are orthogonal (perpendicular to one another)!

664/16

Find $\mathbf{a} \cdot \mathbf{b}$, given that $\|\mathbf{a}\|=6,\|\mathbf{b}\|=\frac{1}{3}$, and the angle between \mathbf{a} and \mathbf{b} is $\theta=\frac{\pi}{4}$.

Solution

Via the physics definition of dot product we have

$$
\mathbf{a} \cdot \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta=(6)\left(\frac{1}{3}\right)\left(\frac{\sqrt{2}}{2}\right)=\sqrt{2}
$$

665/34

Find the values of x such that the vectors $\mathbf{v}=[x, x,-1]$ and $\mathbf{w}=[1, x, 6]$ are orthogonal.

Solution

For the given vectors to be orthogonal (perpendicular), their dot product must equal zero.

$$
\begin{aligned}
\mathbf{v} \cdot \mathbf{w} & =0 \\
(x)(1)+(x)(x)+(-1)(6) & =0 \\
x^{2}+x-6 & =0 \\
(x-2)(x+3) & =0 \\
x & =-3,2
\end{aligned}
$$

665/48

Find the scalar and vector projections of $\mathbf{b}=\mathbf{i}+6 \mathbf{j}-2 \mathbf{k}$ onto $\mathbf{a}=2 \mathbf{i}-3 \mathbf{j}+\mathbf{k}$.

Solution

- The scalar projection is

$$
\begin{aligned}
\operatorname{comp}_{\mathbf{a}}^{\mathbf{b}} & =\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|} \\
& =\frac{2-18-2}{\sqrt{4+9+1}} \\
& =-\frac{18}{\sqrt{14}} \text { or }-\frac{9 \sqrt{14}}{7} .
\end{aligned}
$$

- The vector projection is

$$
\begin{aligned}
\operatorname{proj}_{\mathbf{a}} \mathbf{b} & =\left(\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|}\right) \frac{\mathbf{a}}{\|\mathbf{a}\|} \\
& =-\frac{18}{\sqrt{14}} \frac{[2,-3,1]}{\sqrt{14}} \\
& =-\frac{9}{7}[2,-3,1] \\
& =\left[-\frac{18}{7}, \frac{27}{7},-\frac{9}{7}\right]
\end{aligned}
$$

665/54

Find the work done by a force of 20 lb acting in the direction $\mathrm{N} 50^{\circ} \mathrm{W}$ in moving an object 4 ft due west.

Solution

The angle between the force and displacement vectors is 40°. The definition of work and our trusty TI-89 give

$$
W=\mathbf{F} \cdot \mathbf{d}=\|\mathbf{F}\|\|\mathbf{d}\| \cos \theta=(20)(4)\left(\cos 40^{\circ}\right) \approx 61.28 \mathrm{ft}-\mathrm{lb}
$$

MATLAB Examples

s053x01

Find a vector a with representation given by the directed line segment $\overrightarrow{A B}$ connecting points $A(1,3)$ and $B(4,4)$. Draw $\overrightarrow{A B}$ and the equivalent representation that starts at the origin.

Solution

We have $\mathbf{a}=\overrightarrow{A B}=\vec{B}-\vec{A}=[4,4]-[1,3]=[3,1]$. Here is a diary file and a diagram; arrow is a command Cooper wrote.

```
% Stewart 53/1
%
origin = [0 0]; A = [1 3]; B = [4 4];
a = B - A
a =
arrow(A, a); hold on; axis equal
arrow(origin, a, 'r'); grid on
axis([-1 5 -1 5])
plot(A(1), A(2), 'ms', 'MarkerSize', 12);
plot(B(1), B(2), 'gs', 'MarkerSize', 12)
plot(0, 0, 'ks', 'MarkerSize', 12)
plo
echo off; diary off
                                    Stewart 53/1
```


s053x05

Find the sum of the vectors $\mathbf{v}=[2,3]$ and $\mathbf{w}=[3,-4]$, then illustrate geometrically.

Solution

We have $\mathbf{v}+\mathbf{w}=[5,-1]$. Here is a diary file followed by a diagram that illustrates vector addition via the Triangle Law-the "head-to-tail" interpretation of vector addition.

```
%
S Stewart 53/5
v = [2 3]; w = [3 -4];
o = [0 0}|];u=v+
u =
    5 -1
arrow(o, v, 'b'); hold on;
arrow(v, w, 'r')'; arrow(o, u, 'm')
axis equal; grid on
axis([-1 6 -2 4])
%
echo off; diary off
```


s664x10 [664/10 revisited]

Let $\mathbf{a}=6 \mathbf{i}+\mathbf{k}$ and $\mathbf{b}=\mathbf{i}-2 \mathbf{j}+7 \mathbf{k}$. Find $\|\mathbf{a}\|, \mathbf{a}+\mathbf{b}, \mathbf{a}-\mathbf{b}, 2 \mathbf{a}$, and $3 \mathbf{a}+4 \mathbf{b}$.

Solution

MATLAB easily renders the needful; same with the TI-89.
(NOTE: The len command is not built into MATLAB. I wrote it for you as part of the effort to convert the VecCalc package to YAP (Yet Another Platform)—MATLAB. Here is a list of the versions I've written over the years. (The MATLAB port will go on from week-to-week during the Spring 2004 term.)

Maple
1994
HP 48GX 1995
TI-89
1998
HP 49G 1999
HP 49g+ 2004
MATLAB 2002, 2004

```
%
% Stewart 664/10
a = [6 0 1]; b = [1 -2 7]; % NUMERICAL vectors
length_of_a = len(a) % sqrt(37) as a decimal
length_of_a =
    6.0828
vector_sum = a + b
vector_sum =
    7 -2 8
vector_difference = a - b
vector_difference =
5 2 -6
scalar_multiple_of_a = 2*a
scalar_multiple_of_a =
linear_combination_of_a_and_b = 3*a + 4*b
linear_combination_of_a_and_b =
    22 -8 31
%
a = sym([l 0 1]) % a SYMBOLIC vector
a}
[ 6, 0, 1]
exact_length_of_a = len(a) % FORTRANesque...
exact_length_of_a =
```

$37^{\wedge}(1 / 2)$
pretty (exact_length_of_a) \% ...that's nicer!
$37^{1 / 2}$
$\%$
echo off; diary off

s664x14 [664/14 revisited]

Find the unit vector that has the same direction as $\mathbf{a}=2 \mathbf{i}-4 \mathbf{j}+7 \mathbf{k}$.

Solution

MATLAB makes short work of this one too. Once again, the unitvec command is one that I wrote as part of the MATLAB VecCalc package. For help on any MATLAB command, type "help command" (without the quotes) at the MATLAB command prompt. Here command is the command of interest. To see the actual code (if it is available), type "type command."

```
% Stewart 664/14
%
v = [\begin{array}{lll}{2 -4 7]; % NUMERICAL vector}\end{array}]
v_hat = unitvec(v) % unit vector as a decimal
v_hat =
    0.2408 -0.4815 0.8427
%
v = sym([2 -4 7]); % SYMBOLIC vector
v_hat = unitvec(v); % exact unit vector
pretty(v_hat)
    [\mp@code{1/2 [-4/69 69 1/2 }
%
echo off; diary off
```


s664x18 [664/18 revisited]

Given $\mathbf{a}=[-1,-2,-3]$ and $\mathbf{b}=[2,8,-6]$, find the dot product $\mathbf{a} \cdot \mathbf{b}$.

Solution

```
%
% Stewart 664/18
a = [-1 -2 -3]; b = [2 8 - 6}]
a_dot_b = dot (a,b)
a_dot_b =
%
echo off; diary off
```


s665x28

Find, correct to the nearest degree, the three angles of the triangle with vertices $P(0,-1,6), Q(2,1,-3)$, and $R(5,4,2)$.

Solution

Render the sides of the triangles as vectors, then use another VecCalc command I wrote, angvecdg, which gives the angle between two vectors in decimal degrees. If you look at the code, it ultimately uses a formula from the summary.

```
%
Stewart 665/28
%
P = [0 -1 6]; Q = [2 1 -3]; R = [5 4 2];
PQ = Q-P, QR = R-Q, RP = P-R
PQ =
QR=}\begin{array}{llr}{2}&{2}&{-9}\\{3}&{3}&{5}\\{RP=}&{5}\\{-5}&{-5}&{4}
Alpha = angvecdg(PQ, -RP)
Alpha =
    43.0574
Beta = angvecdg(QR, -PQ)
Beta =
    57.7619
Gamma = angvecdg(RP, -QR)
Gamma =
    79.1807
sum_of_angles = Alpha + Beta + Gamma
sum_of_angles =
    180
%
echo off; diary off
```



```
Q
```


s665x40

Find the direction cosines and direction angles (to the nearest degree) of the vector $\mathbf{v}=\mathbf{3 i}+5 \mathbf{j}-4 \mathbf{k}$.

Solution

Three commands render the needful. Radians-to-degree ($\mathbf{r 2 d}$) is another VecCalc command.

```
%
Stewart 665/40
v = [l3 5 -4];
u = unitvec(v) % direction cosines
u =
    0.4243 0.7071 -0.5657
a = r2d(acos(u)) % direction angles in degrees
a =
    64.8959 45.0000 124.4499
%
echo off; diary off
```

s665x48 [665/48 revisited]

Find the scalar and vector projections of $\mathbf{b}=\mathbf{i}+6 \mathbf{j}-2 \mathbf{k}$ onto $\mathbf{a}=2 \mathbf{i}-3 \mathbf{j}+\mathbf{k}$.

Solution

The double command converts an object to a double precision floating point decimal.

```
%
%
a = sym([2 -3 1]); b = sym([1 6 -2]); % SYMBOLIC vectors
c = comp(a,b); pretty(c) % exact scalar projection
                                    -9/714
format short % the default
c_floated = double(c) % decimal approximation
c_floated =
    -4.8107
format long
c_floated % full floating point precision
c_floated =
    -4.81070235442364
p = proj(a,b) % exact vector projection
p =
[ -18/7, 27/7, -9/7]
format short % Restore default
% "Good enough for government work."
p_floated = double(p)
p_floated =
    -2.5714 3.8571 -1.2857
%
echo off; diary off
```


s665x59

Find the angle between the diagonal of a cube and a diagonal of one of its faces.

Solution

Place the cube in the first octant with one of its corners at the origin in \mathbb{R}^{3}. Let side length of the cube be $a>0$. The endpoint of the diagonal through the cube is $A(a, a, a)$. Let $\mathbf{w}=[a, a, a]$ be the position vector from the origin to A. The origin and $B(a, a, 0)$ form a diagonal along one of the faces of the cube. Let $\mathbf{z}=[a, a, 0]$ be the position vector from the origin to B. Now simply compute the angle between \mathbf{w} and \mathbf{z}.

```
%
% Stewart 665/59
%
syms a positive % Symbolic variable assumed to be positive.
w = [a a a]; z = [a a 0];
our_angle = double(angvecdg(w,z))
our_angle =
    35.2644
%
echo off; diary off
```

Here are two views of a cube with side length 1 together with the relevant diagonals.

