Spring 2004 Math 253/501-503

 12 Multivariable Differential Calculus 12.7 Maximum and Minimum Values Tue, 17/Feb (C)2004, Art Belmonte
Summary

With $\mathbf{x}=\left[x_{1}, \ldots, x_{n}\right]$, let $f(\mathbf{x})$ be a real-valued function of n variables defined on a subset D of \mathbb{R}^{n}.

- local maximum of f at $\mathbf{x}_{*}: f\left(\mathbf{x}_{*}\right) \geq f(\mathbf{x})$ whenever $\mathbf{x} \in B\left(\mathbf{x}_{*} ; r\right) \cap D$ for some ball about \mathbf{x}_{*}; colloquially, $f\left(\mathbf{x}_{*}\right)$ is the "highest" point locally
- absolute maximum of f at $\mathbf{x}_{*}: f\left(\mathbf{x}_{*}\right) \geq f(\mathbf{x})$ for all $\mathbf{x} \in D$; colloquially, $f\left(\mathbf{x}_{*}\right)$ is the "highest" point globally
- local minimum of f at $\mathbf{x}_{*}: f\left(\mathbf{x}_{*}\right) \leq f(\mathbf{x})$ whenever $\mathbf{x} \in B\left(\mathbf{x}_{*} ; r\right) \cap D$ for some ball about $\mathbf{x}_{*} ;$ colloquially, $f\left(\mathbf{x}_{*}\right)$ is the "lowest" point locally
- absolute minimum of f at $\mathbf{x}_{*}: f\left(\mathbf{x}_{*}\right) \leq f(\mathbf{x})$ for all $\mathbf{x} \in D$; colloquially, $f\left(\mathbf{x}_{*}\right)$ is the "lowest" point globally
- A critial point (or stationary point) \mathbf{x}_{*} is one for which $\vec{\nabla} f\left(\mathbf{x}_{*}\right)=\mathbf{0}$, the zero vector, or for which $\vec{\nabla} f\left(\mathbf{x}_{*}\right)$ does not exist (due to the fact that a partial derivative of f does not exist at \mathbf{x}_{*}).
- A local extremum is either a local maximum or local minimum. The plurals of maximum, minimum, and extremum are maxima, minima, and extrema, respectively.
- Recall that the gradient vector of f is

$$
\vec{\nabla} f=\left[\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{n}}\right],
$$

a vector of first-order partial derivatives; in TAMUCALC, use the grad command.

- The Hessian matrix of f is $H=\left[\begin{array}{ccc}f_{x_{1} x_{1}} & \cdots & f_{x_{1} x_{n}} \\ \vdots & \ddots & \vdots \\ f_{x_{n} x_{1}} & \cdots & f_{x_{n} x_{n}}\end{array}\right]$, a matrix of second-order partial derivatives; in TAMUCALC, use the hess command.
- The LPMDs (Leading Principal Minor Determinants) of the Hessian H are the determinants of the upper left square submatrices of H. We form a collection of them-the 1×1 determinant, the 2×2 determinant, etc.

Theorems

- If f has a local extremum at \mathbf{x}_{*}, then $\vec{\nabla} f\left(\mathbf{x}_{*}\right)=\mathbf{0}$, provided the first-order partial derivatives of f exist at \mathbf{x}_{*}.
- EVT (Extreme Value Theorem): If f is continuous on a closed bounded set D in \mathbf{R}^{n}, then f attains an absolute maximum value and absolute minimum value at some points in D.

Tests

SDT (Second Derivatives Test) Let \mathbf{x}_{*} be a critical point of f with $\vec{\nabla} f\left(\mathbf{x}_{*}\right)=\mathbf{0}$ and assume that the Hessian of f is continuous in a neighborhood of \mathbf{x}_{*}. Consider the LPMDs at \mathbf{x}_{*}.

- LPMDs all positive \Rightarrow local minimum of f at \mathbf{x}_{*}.
- LPMDs alternate in sign, starting with negative $(-,+,-,+, \ldots) \Rightarrow$ local maximum of f at \mathbf{x}_{*}.
- If neither \#1 or \#2 hold, then in general the Second Derivatives Test is inconclusive*.
- *EXCEPT, for a two-variable problem (the typical case for you!), if the second LPMD is negative, then f has a saddle point at x_{*}.

Extreme Values Test To find the absolute maximum and minimum values of a continuous function f on a closed bounded set D, proceed as follows.

1. Find the critical points of f in the interior of D (just solve $\vec{\nabla} f=\mathbf{0}$; you do NOT need to classify said points using the SDT); a Calc 3 problem.
2. Find the critical points of f on the boundary of D; typically Calc 1 or high school problems.
3. Crank out function values of f at the points you found in (a) and (b). The biggest is the absolute maximum; the smallest is the absolute minimum.

"Hand" Examples

The time has come for machine power! Use your TI-89 and TAMUCALC when doing problems "by hand."

781/6

Find all local extrema and saddle points of the function

$$
f(x, y)=2 x^{3}+x y^{2}+5 x^{2}+y^{2}
$$

Solution

- Solve $\vec{\nabla} f=\left[6 x^{2}+10 x+y^{2}, \quad 2 x y+2 y\right]=[0,0]$ for x and y to obtain critical points $[x, y]$:

$$
[0,0], \quad\left[-\frac{5}{3}, 0\right], \quad[-1,2], \quad[-1,-2] .
$$

- Compute the Hessian matrix

$$
H(x, y)=\left[\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right]=\left[\begin{array}{cc}
12 x+10 & 2 y \\
2 y & 2 x+2
\end{array}\right]
$$

and leading principal minor determinants (LPMDs)

$$
L(x, y)=\left[12 x+10, \quad(12 x+10)(2 x+2)-4 y^{2}\right] .
$$

- Here is a table analyzing the four critical points. Verify the cell entries with your TI-89 as we did in class.

(x, y)	$f(x, y)$	$H(x, y)$		LPMDs
Classification				
$(0,0)$	0	$\left[\begin{array}{rr}10 & 0 \\ 0 & 2\end{array}\right]$	$[10,20]$	local minimum
$\left(-\frac{5}{3}, 0\right)$	$\frac{125}{27} \approx 4.63$	$\left[\begin{array}{rr}-10 & 0 \\ 0 & -\frac{4}{3}\end{array}\right]$	$\left[-10, \frac{40}{3}\right]$	local maximum
$(-1,2)$	3		$\left.\begin{array}{rr}-2 & 4 \\ 4 & 0\end{array}\right]$	$[-2,-16]$

- Of course, the pictures tell the story! See the corresponding MATLAB example for graphical verification of these assertions.

782/30

Find the absolute maxiumum and minimum values of the function $f(x, y)=2 x^{2}+x+y^{2}-2$ on $D=\left\{(x, y): x^{2}+y^{2} \leq 4\right\}$.

Solution

The Extreme Value Theorem guarantees that f indeed attains maximum and minimum values on the closed circular disk D.

- For the interior of D, solve $\vec{\nabla} f=[4 x+1,2 y]=[0,0]$ to obtain $(x, y)=\left(-\frac{1}{4}, 0\right)$, which is in D. (If it were not in D, we'd toss this point out.)
- For the boundary of D, substitute $x^{2}+y^{2}=4$ into $f(x, y)$ to obtain $g(x)=x^{2}+x+2,-2 \leq x \leq 2$. Solve $g^{\prime}(x)=2 x+1=0$ to obtain $x=-\frac{1}{2}$, which is in the open interval $(-2,2)$. (Were it not, we'd toss it out.) For this value of x, we have $y= \pm \sqrt{4-x^{2}}= \pm \sqrt{15 / 4}= \pm \frac{1}{2} \sqrt{15}$.
- Don't forget to check the boundary of the boundary; i.e., the endpoints of the interval $[-2,2]$! When $x= \pm 2$, we have $y=0$.
- Crank out function values of f at the points encountered.

(x, y)	$f(x, y)$	Comments
$\left(-\frac{1}{4}, 0\right)$	$-\frac{17}{8}=-2.125$	absolute mininum on D
$\left(-\frac{1}{2},-\frac{1}{2} \sqrt{15}\right)$	$\frac{7}{4}=1.75$	(intermediate value)
$\left(-\frac{1}{2}, \frac{1}{2} \sqrt{15}\right)$	$\frac{7}{4}=1.75$	(intermediate value)
$(-2,0)$	4	(intermediate value)
$(2,0)$	8	absolute maximum on D

- See the corresponding MATLAB example for a nice surfc (surface and contour) pic of this surface.

782/48

Find the dimensions of the rectangular box with largest volume if the total surface area is given as $64 \mathrm{~cm}^{2}$.

Solution

We'll do this one together on our TI-89s.
Draw a diagram. Let x, y, and z be the length, width, and height of the box, respectively. The volume of the box is $V=x y z$, whereas its surface area is $S=2 x y+2 y z+2 x z=64$. Solving the latter for z yields $z=\frac{32-x y}{x+y}$. Hence
$f(x, y)=V(x, y, z)=\frac{x y(32-x y)}{x+y}$ via substitution.

- Solve $\vec{\nabla} f=\mathbf{0}$ to obtain $x=y=\frac{4}{3} \sqrt{6} \approx 3.27 \mathrm{~cm}$. ("Use the Force, Luke. . .")
- Physically this must give the solution, whence $z=\frac{4}{3} \sqrt{6} \approx 3.27 \mathrm{~cm}$ and $V=\frac{128}{9} \sqrt{6} \approx 34.84 \mathrm{~cm}^{3}$.
- You may check, however, that at $(x, y)=\left(\frac{4}{3} \sqrt{6}, \frac{4}{3} \sqrt{6}\right)$ the LPMDs are $\left\{-\frac{4}{3} \sqrt{6}, 8\right\}$ or $\{-,+\}$, signifying a [local] maximum.
- More evidence is had from the fact that along the "boundary" $x=0$, we have $V=0$. Similarly, $V=0$ along $y=0$. Here are illustrative graphs!

Stewart 782/48: Volume of box as a function of x and y

MATLAB Examples

s781x06 [781/6 revisited]

Find all local extrema and saddle points of the function

$$
f(x, y)=2 x^{3}+x y^{2}+5 x^{2}+y^{2} .
$$

Solution

Here we replicate the symbolic work we did with our TI-89.

```
% Stewart 781/6: symbolic work
%
syms x y; v = [x y];
f = 2* x^^3 + x* y^2 + 5* x^2 + y^2;
pretty(f)
        2 x
g = grad(f,v); pretty(g)
    [6 2 < + y 2 + 10x 2 x y + 2 y]
c = solve(g(1), g(2))
c}
    x: [4x1 sym]
    y: [4x1 sym]
c = [c.x c.y]; c
c =
[rrr
h = Hess(f,v); L = LPMD(h);
pretty(h); pretty(L)
                            [12 x + 10 
                [12x+10 24 x
%
echo off
for k = 1:size(c,1)
    p = c(k,:)
    func_val = subs(f, [x y], p)
    Hessian = subs(h, [x y], p)
    LPMDs = subs(L, [x y], p)
end
```

```
p =
[ 0, 0]
func_val =
0
Hessian =
    [ 10, 0]
    [ 0, 2]
LPMDS =
[ 10, 20]
p =
[-5/3, 0]
func_val =
125/27
Hessian =
[ [r10,
LPMDs =
[ -10, 40/3]
p =
[ -1, 2]
func_val =
3
Hessian =
[ -2, 4]
[ 4, 0]
LPMDS =
[ -2, -16]
p =
[ -1, -2]
func_val =
3
Hessian =
[ -2, -4]
[ -4, 0]
LPMDs =
[ -2, -16]
```

Now we illustrate the extrema and saddle points with surface and contour graphs!

```
% % Stewart 781/6g
%
x = linspace(-2, 0.5, 25); y = linspace(-3, 3, 25);
[X,Y] = meshgrid(x,y);
Z = 2*X.^3 + X.*Y.^2 + 5*X.^2 + Y.^2;
surf(X,Y,Z); grid on
%
figure
x = linspace(-2, 0.5, 75); y = linspace(-3, 3, 75);
[X,Y] = meshgrid(x,y);
Z = 2*X.^3 + X.*Y.^2 + 5*X.^2 + Y.^2;
pcolor(X,Y,Z); shading interp
hold on; contour(X,Y,Z,20,'k')
%
echo off; diary off
```


s782x30 [782/30 revisited]

Find the absolute maxiumum and minimum values of the function $f(x, y)=2 x^{2}+x+y^{2}-2$ on $D=\left\{(x, y): x^{2}+y^{2} \leq 4\right\}$.

Solution

Here is code which draws a combination surface/contour plot that is illustrative, followed by the graph.

```
%
% Stewart 782/30
%
r = linspace(0, 2, 21); t = linspace(0, 2*pi, 37);
[R,T] = meshgrid(r,t);
X = R .* cos(T); Y = R .* sin(T);
Z = 2*X.^2 + X + Y.^2 - 2;
surfc(X,Y,z); grid on
%
echo off; diary off
    Stewart 782/30: surfc plot
```


