
P542 Hardware System Design II

Lab Report 2

Enrique Areyan

Description of solution

The easiest solution was to represent the program as a state machine. Three
states were needed: one for RUN and two for PAUSE, one for pause from
keyboard and another for pause from user button. The following diagram
represents the program:

From the Run state we can move to the PauseUserButton state if the button is
pressed. From the Run state we can move to the PauseUserInput state if the
user types a ‘p’. We can only exit the PauseUserButton to the Run state if the
user releases the button. Likewise, we can only exit the PauseUserInput state if
the user types a character ‘r’. Note that all the state machine is wrapped around
a while(1) and implemented as a switch statement.

Description of issues

The main issue was in the delay function used for lab 1. In this function we had a
while loop doing nothing and so the program was stopped in a portion of code for
a long time. Somehow, and this is still not entirely clear to me, this conflicted with
getting the input from the UART module. Strange behaviors occurred, e.g., the
program only accepted the first input from the user and not any other.

The key to solving this is to have the user poll (non-blocking get char) right after
the while(1) and before the switch statement. In this manner, the program
always polls data from the user and maintains a clean buffer, thereby avoiding
potential crashes.

The best hypothesis I have of why the above issue occurs is that there was an
issue with getting the information from the buffer while using the lab 1 type of
delay. Perhaps a mismatch between the running time of the main program and
the UART module cause an internal exception that I was not able to capture.

RUN	

PAUSE	
USER	

BUTTON	

PAUSE	
USER	
INPUT	

