609 Final Exam

Enrique Areyan April 30, 2013

- (15.1) Let G = (V, E) and $S \subseteq V$. Suppose that G is an (n, d, c)-expander. By definition $|\Gamma(S)| \ge c|S|$ for all S with $|S| \le n/2$, where $|\Gamma(S)|$ denote the set of all proper neighbors of S. In what follows, let $S \subseteq V$ be such that $|S| \le n/2$. Consider also the following definitions: A unique neighbor of S is a vertex in $\Gamma(S)$ connected by an edge to only one vertex in S. Let $U \subseteq \Gamma(S)$ denote the set of unique neighbors of S and $T \subseteq \Gamma(S)$ the set of non-unique neighbors of S. Let us count in two ways the number of edges between S and T. Denote this number by EBST.
 - (i) $EBST \leq d|S|$, since G is a d-regular graph, so in the worst case all edges in S come from to T.
 - (ii) $EBST \ge 2|T|$, since each member of T contributes at least 2 edges between S and T.

Therefore, $d|S| \ge EBST \ge 2|T|$. However, the neighbors of S can be partitioned as follow: $\Gamma(S) = U \cup T$. Since $U \cap T = \emptyset$, we know that $|\Gamma(S)| = |U| + |T| \iff |T| = |\Gamma(S)| - |U|$. Replacing |T| in the above inequality we get:

$$d|S| \ge EBST \ge 2(|\Gamma(S)| - |U|)$$

But G is an (n, d, c)-expander, which in particular means that $|\Gamma(S)| \ge c|S|$. Thus,

$$\begin{aligned} d|S| &\geq EBST \geq 2(|\Gamma(S)| - |U|) \geq 2(c|S| - |U|) \\ \Rightarrow d|S| &\geq 2(c|S| - |U|) \Rightarrow d/2|S| \geq c|S| - |U| \\ \iff |U| \geq (c - d/2)|S| \end{aligned}$$

(15.2) Let A be a square symmetric matrix, λ one of its eigenvalues and x an eigenvector associated with λ . Consider the following statement:

$$S(n): A^n x = \lambda^n x$$

We want to show that S(n) holds for every $n \in \mathbb{N}$. The proof is by induction.

Base Case: S(0) is true since: $A^0x = Ix = x = 1 \cdot x = \lambda^0 x$.

Inductive Step: Suppose that S(n) is true for $n \ge 0$. To prove S(n+1) we proceed as follow:

 $\begin{array}{rcl} A^{n+1}x &=& A(A^nx) & \text{By power rule for square matrices and associativity} \\ &=& A(\lambda^n x) & \text{By inductive hypothesis} \\ &=& \lambda^n(Ax) & \text{By linearity of } A \\ &=& \lambda^n(\lambda x) & \text{Since } x \text{ is an eigenvector with eigenvalue } \lambda \\ &=& \lambda^{n+1}x & \text{Power rule} \end{array}$

Hence, the statement $S(n+1): A^{n+1}x = \lambda^{n+1}x$ is true, which shows the result.

(15.4) Let G be a bipartite d-regular graph on n vertices with parts of size p and q with p + q = n. Let A be adjacency matrix of G. Then A has the following structure:

$$A = \begin{bmatrix} \mathbf{0} & B \\ B^T & \mathbf{0} \end{bmatrix}$$

where B is a $p \times q$ matrix. Note that since G is d-regular, each row and column of B has exactly d many ones.

<u>Claim</u>: both d and -d are eigenvalues for A with eigenvectors $(1, \dots, 1)$ and $(1, \dots, 1, -1, \dots, -1)$ (p many ones and q many minus ones), respectively.

<u>Proof:</u> the proof follows from the definition of eigenvalues/eigenvectors, i.e. α is an eigenvalue of A if and only if $A\alpha = \alpha x$ for some vector $x \in \mathbb{F}^n$. Let $x = (1, \dots, 1)$. Then:

$$Ax = \begin{bmatrix} \mathbf{0} & B \\ B^T & \mathbf{0} \end{bmatrix} \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$
By definition of A and x
$$= \begin{bmatrix} d \\ \vdots \\ d \end{bmatrix}$$
Since B has exactly d ones in each row and column
$$= d \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$
Factoring d out
$$= dx$$
By definition of x

Hence, $(1, \dots, 1)$ is an eigenvector with eigenvalue d. Likewise, let x now be $(1, \dots, 1, -1, \dots, -1)$. Then:

$$Ax = \begin{bmatrix} \mathbf{0} & B \\ B^T & \mathbf{0} \end{bmatrix} \begin{bmatrix} 1 \\ \vdots \\ 1 \\ -1 \\ \vdots \\ -1 \end{bmatrix}$$
 By definition of A and x
$$= \begin{bmatrix} -d \\ \vdots \\ -d \\ d \\ \vdots \\ d \end{bmatrix}$$
 Since B has exactly d ones in each row and column
$$= -d \begin{bmatrix} 1 \\ \vdots \\ 1 \\ -1 \\ \vdots \\ -1 \end{bmatrix}$$
 Factoring $-d$ out
$$= -dx$$
 By definition of x

Hence, $(1, \dots, 1, -1, \dots, -1)$ is an eigenvector with eigenvalue -d.

(13.2) Let $x \in \mathbb{F}_2^n$ be such that $x \neq \vec{0}$. Following the hint, let us fix an i with $0 \leq i \leq n$ such that $x_i = 1$. Now, partition \mathbb{F}_2^n by defining the set $\mathcal{X} := \{(y, y') \in \mathbb{F}_2^n \times \mathbb{F}_2^n \mid y \text{ and } y' \text{ differ only in their } i\text{-th coordinate}\}$. First note that \mathcal{X} covers \mathbb{F}_2^n , i.e., $\bigcup_{(y,y')\in\mathcal{X}} \{y\} \cup \{y'\} = \mathbb{F}_2^n$. Since any vector belongs to only one pair it follows that

$$|\mathcal{X}| = |\mathbb{F}_2^n|/2.$$

Finally, note that by the construction of \mathcal{X} , we know that for each of its pairs: $\langle x, y \rangle \neq \langle x, y' \rangle$ since y, y' differ only in the *i*-th coordinate. Therefore, if $\langle x, y \rangle = 0$, then $\langle x, y' \rangle = 1$. If, on the contrary $\langle x, y \rangle = 1$, then $\langle x, y' \rangle = 0$. In any case, for each pair (y, y') the vector x is orthogonal to either y or y' but not both. By the previous argument about the cardinality of \mathcal{X} , it follows that x is orthogonal to half of vectors in \mathbb{F}_2^n . \Box

(13.9) Let $n \in \mathbb{N}$. Define the set $\mathcal{F}_n := \{f \in \mathbb{F}_2[x_1, \cdots, x_n] : d = deg(f) < n, f \neq 1\}$. From this set, define the following $\mathcal{V}_d := \{v \in \mathbb{F}_2^n : v \neq 0, \text{ with at most } d+1 \text{ ones}\}$. Now, consider the following statement:

$$S(n) := \forall f \in \mathcal{F}_n / \exists v \in \mathcal{V}_d : f(v) = 0$$

We want to show that S(n) holds for every $n \in \mathbb{N}$. The proof is by induction.

Base Case:

- S(0) is vacuously true since there are no polynomials of degree less than zero.
- S(1) is true since the only possible polynomials of degree less than 1 are: $f(x_1) = 0$ or $f(x_1) = 1$. However, we do not admit the case when $f \equiv 1$, so the only possibility is that $f(x_1) = 0$. Obviously, there exists $x_1 \in \mathcal{V}_0$ such that $f(x_1) = 0$. Take either $x_1 = 0$ or $x_1 = 1$. Both have at most d + 1 = 0 + 1 = 1 one.

Inductive Step: Suppose that S(n) is true for $n \ge 0$. To prove S(n+1) we proceed as follow:

Let $f \in \mathcal{F}_{n+1}$. We can factor f into two parts as follow:

$$f(x_1, \cdots, x_{n+1}) = f_0(x_1, \cdots, x_n)x_{n+1} + f_1(x_1, \cdots, x_n)$$

where $f_0, f_1 \in \mathcal{F}_n$. Essentially, we have factor the polynomial f in n + 1 variables as a sum of a polynomial in the variable x_{n+1} whose coefficient is a polynomial in n variables and the rest that does not depend on x_{n+1} . (For example, the polynomial $f(x_1, x_2, x_3) = x_1x_2x_3 + x_1x_3 + x_2 = (x_1x_2 + x_1)x_3 + x_2$, in this case $f_0(x_1, x_2) = x_1x_2 + x_1$ and $f_1(x_1, x_2) = x_2$. Note that since we are working in \mathbb{F}_2 , each monomial has at most one occurrence of each variable). Now, for f it might be that $f_1 \equiv 0$ or not, i.e., each monomial in fmight have x_{n+1} or not. Let us handle these two cases separately:

If $f_1 \equiv 0$, then $f(x_1, \dots, x_{n+1}) = f_0(x_1, \dots, x_n)x_{n+1}$.

In this case, by inductive hypothesis, there exists $(x_1, \dots, x_n) \in \mathcal{V}_n$ such that $f_0(x_1, \dots, x_n) = 0$. Add a final coordinate to this vector with a zero or a one, i.e., $(x_1, \dots, x_n, 0/1) \in \mathcal{V}_{n+1}$ and we have that $f(x_1, \dots, x_{n+1}) = f_0(x_1, \dots, x_n)x_{n+1} = 0 \cdot 0/1 = 0$. So, in either case we obtain the result. Note that in the case where we add a one, $(x_1, \dots, x_n, 1)$, we have at most d+2 ones where $d = deg(f_0)$ so we are still in \mathcal{V}_{n+1} since the degree of f is one more than the degree of f_0 .

If $f_1 \neq 0$ then, by inductive hypothesis, there exists $(x_1, \dots, x_n) \in \mathcal{V}_n$ such that $f_1(x_1, \dots, x_n) = 0$. In this case, augment this vector by adding a final zero coordinate: $(x_1, \dots, x_n, 0) \in \mathcal{V}_{n+1}$ to obtain the desired vector: $f(x_1, \dots, x_n, 0) = f_0(x_1, \dots, x_n)0 + f_1(x_1, \dots, x_n) = 0 + 0 = 0$. We do not add ones to this vector, so we can conclude that $(x_1, \dots, x_n, 0) \in \mathcal{V}_{n+1}$ since $(x_1, \dots, x_n) \in \mathcal{V}_n$.

In any case we have show that there exists $(x_1, \dots, x_n, x_{n+1}) \in \mathcal{V}_d$ such that $f(x_1, \dots, x_n, x_{n+1}) = 0$. \Box

(13.17) Let A_1, \dots, A_m be a k-uniform, L-intersecting family of subsets of an n-element set. WLOG, suppose that $L = \{l_1, \dots, l_s\}.$

For A_i with $i = 1, \dots, m$ let us define the polynomial f_i in n variables by:

$$f_i(x) = \prod_{k: \ l_k < |A_i|} (\langle v_i, x \rangle - l_k), \text{ where } x \in \mathbb{R}^n$$

and, $A_i \mapsto v_i = (v_{i1}, \cdots, v_{in})$, where $v_{ij} = 1$ if $j \in A_i$, otherwise $v_{ij} = 0$.

Observe that $f_i(v_j) = 0$ for all $1 \le j < i \le m$, since the dot product of v_i with x will kill all x_i such that *i* does not appear in A_i and leave all others such that when v_j is replaced, the sum will equal l_k and thus $l_k - l_k = 0$. Likewise, $f_i(v_i) \ne 0$ for all $1 \le i \le m$, since the number generated by the dot product will be greater than l_k . It follows from lemma 13.11 that the polynomials f_1, \dots, f_m are linearly independent over \mathbb{R} . Note that $deg(f_i) \le s$ for all $i = 1, \dots, m$ since the maximum intersection size between two sets is l_s .

Now, associate with each subset I of $\{1, \dots, n\}$ of cardinallity $|I| \leq s - 1$, the following polynomial of degree at most s:

$$g_I(x) = ((\sum_{j=1}^n x_j) - k) \prod_{i \in I} x_i$$

Observe that for any subset $S \subseteq \{1, \dots, n\}$:

$$g_I(S) \neq 0 \iff |S| \neq k \text{ and } I \subseteq S$$

<u>Remark</u>: We can state our goal at this point. We want to show that the set $\{f_1, \dots, f_m\} \cup \{g_{I1}, \dots, g_{It}\}$ is a linearly independent set and use the Linear Algebra bound in which if a set of cardinality m is linearly independent in V and dim(V) = n then $m \leq n$. By theorem 13.13 we know the f_i polynomials lie in the span of $\sum_{i=0}^{s} \binom{n}{i}$ many multilinear monomials. Also, since the degree of each g_j is at most s, these polynomials

also lie in the same span. But there are $\sum_{i=0}^{s-1} {n \choose i}$ many g_j polynomials. Therefore, if the combination of f and g form a linearly independent set we get the whole space, from which we can conclude that $m \leq {n \choose s}$, since a basis for this space is the combination of ${n \choose s}$ monomials. (end of remark)

Now, all that remains is filling in the details for the proof that the set $\{f_1, \dots, f_m\} \cup \{g_{I1}, \dots, g_{It}\}$ is a linearly independent. For this, take a linear combination and assume that is equal to zero:

$$\sum_{i=1}^{m} \lambda_i f_i + \sum_{|I| \le s-1} \mu_I g_I = 0, \quad \text{for some } \lambda_i, \mu_I \in \mathbb{R}$$

On the one hand, if we substitute any A_j for the variables in this equation, all the g_I 's will vanish since by definition of $g_I(A_j) \neq 0 \iff |A_i| \neq k$ and $I \subseteq A_j$, but A_j belongs to a k-uniform family and hence $|A_j| = k$ for any j, which means that $g_I(A_j) = 0$. On the other, if we substitute $f_i(A_j)$ such that $i \neq j$ then $f_i(A_j) \neq 0$. Therefore $\lambda_j = 0$ for every $j = 1, \dots, m$.

What remains is a relation among the g_I . To show that this relation must be also trivial, assume the opposite and re-write this relation as:

$$\mu_{I_1}g_{I_1} + \mu_{I_2}g_{I_2} + \dots + \mu_{I_t}g_{I_t} = 0$$

with all $\mu_i \neq 0$ and $|I_1| \geq |I_j|$ for all j > 1. Substitue the first set I_1 for the variables:

$$\mu_{I_1}g_{I_1}(I_1) + \mu_{I_2}g_{I_2}(I_1) + \dots + \mu_{I_t}g_{I_t}(I_1) = 0$$

Since $I_j \not\subseteq I_1$ it follows that $g_{I_i}(I_1) = 0$ for all but the first function. In fact, the only function that does not vanishes is g_{I_1} , so we are left with

$$\mu_{I_1}g_{I_1}(I_1) = 0 \iff g_{I_1}(I_1) = 0$$
 since we assumed $\mu_i \neq 0$

But, $I_1 \subseteq I_1$. Hence, by definition of g_{I_1} it must be that $|I_1| = k$. But I_1 is the biggest I so it follow that $|I_1| = s - 1 = k \iff s = k + 1$. But |L| = s = k + 1, but how can you have an intersection of two k-sets giving you a set with k + 1 elements? This is the contradiction we wanted so it follows that the relation among the g's is also trivial. This shows that the set $\{f_1, \dots, f_m\} \cup \{g_{I_1}, \dots, g_{I_t}\}$ is a linearly independent and the result follows as explained in the above remark.