609 Final Exam

Enrique Areyan April 30, 2013

(15.1) Let $G=(V, E)$ and $S \subseteq V$. Suppose that G is an (n, d, c)-expander. By definition $|\Gamma(S)| \geq c|S|$ for all S with $|S| \leq n / 2$, where $|\Gamma(S)|$ denote the set of all proper neighbors of S. In what follows, let $S \subseteq V$ be such that $|S| \leq n / 2$. Consider also the following definitions:
A unique neighbor of S is a vertex in $\Gamma(S)$ connected by an edge to only one vertex in S.
Let $U \subseteq \Gamma(S)$ denote the set of unique neighbors of S and $T \subseteq \Gamma(S)$ the set of non-unique neighbors of S. Let us count in two ways the number of edges between S and T. Denote this number by $E B S T$.
(i) $E B S T \leq d|S|$, since G is a d-regular graph, so in the worst case all edges in S come from to T.
(ii) $E B S T \geq 2|T|$, since each member of T contributes at least 2 edges between S and T.

Therefore, $d|S| \geq E B S T \geq 2|T|$. However, the neighbors of S can be partitioned as follow: $\Gamma(S)=U \cup T$. Since $U \cap T=\emptyset$, we know that $|\Gamma(S)|=|U|+|T| \Longleftrightarrow|T|=|\Gamma(S)|-|U|$. Replacing $|T|$ in the above inequality we get:

$$
d|S| \geq E B S T \geq 2(|\Gamma(S)|-|U|)
$$

But G is an (n, d, c)-expander, which in particular means that $|\Gamma(S)| \geq c|S|$. Thus,

$$
\begin{gathered}
d|S| \geq E B S T \geq 2(|\Gamma(S)|-|U|) \geq 2(c|S|-|U|) \\
\Rightarrow d|S| \geq 2(c|S|-|U|) \Rightarrow d / 2|S| \geq c|S|-|U| \\
\Longleftrightarrow|U| \geq(c-d / 2)|S|
\end{gathered}
$$

(15.2) Let A be a square symmetric matrix, λ one of its eigenvalues and x an eigenvector associated with λ. Consider the following statement:

$$
S(n): A^{n} x=\lambda^{n} x
$$

We want to show that $S(n)$ holds for every $n \in \mathbb{N}$. The proof is by induction.
Base Case: $S(0)$ is true since: $A^{0} x=I x=x=1 \cdot x=\lambda^{0} x$.
Inductive Step: Suppose that $S(n)$ is true for $n \geq 0$. To prove $S(n+1)$ we proceed as follow:

$$
\begin{aligned}
A^{n+1} x & =A\left(A^{n} x\right) & & \text { By power rule for square matrices and associativity } \\
& =A\left(\lambda^{n} x\right) & & \text { By inductive hypothesis } \\
& =\lambda^{n}(A x) & & \text { By linearity of } A \\
& =\lambda^{n}(\lambda x) & & \text { Since } x \text { is an eigenvector with eigenvalue } \lambda \\
& =\lambda^{n+1} x & & \text { Power rule }
\end{aligned}
$$

Hence, the statement $S(n+1): A^{n+1} x=\lambda^{n+1} x$ is true, which shows the result.
(15.4) Let G be a bipartite d-regular graph on n vertices with parts of size p and q with $p+q=n$. Let A be adjacency matrix of G. Then A has the following structure:

$$
A=\left[\begin{array}{cc}
\mathbf{0} & B \\
B^{T} & \mathbf{0}
\end{array}\right]
$$

where B is a $p \times q$ matrix. Note that since G is d-regular, each row and column of B has exactly d many ones.

Claim: both d and $-d$ are eigenvalues for A with eigenvectors $(1, \cdots, 1)$ and $(1, \cdots, 1,-1, \cdots,-1)$ (p many ones and q many minus ones), respectively.

Proof: the proof follows from the definition of eigenvalues/eigenvectors, i.e. α is an eigenvalue of A if and only if $A \alpha=\alpha x$ for some vector $x \in \mathbb{F}^{n}$. Let $x=(1, \cdots, 1)$. Then:

$$
\begin{aligned}
A x & =\left[\begin{array}{cc}
\mathbf{0} & B \\
B^{T} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
1 \\
\vdots \\
1
\end{array}\right] & & \text { By definition of } A \text { and } x \\
& =\left[\begin{array}{c}
d \\
\vdots \\
d
\end{array}\right] & & \\
& =d\left[\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right] & & \text { Since } B \text { has exactly } d \text { ones in each row and column } \\
& =d x & & \text { By definition of } x
\end{aligned}
$$

Hence, $(1, \cdots, 1)$ is an eigenvector with eigenvalue d. Likewise, let x now be $(1, \cdots, 1,-1, \cdots,-1)$. Then:

$$
\begin{aligned}
& A x=\left[\begin{array}{cc}
\mathbf{0} & B \\
B^{T} & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
1 \\
\vdots \\
1 \\
-1 \\
\vdots \\
-1
\end{array}\right] \quad \text { By definition of } A \text { and } x \\
& =\left[\begin{array}{c}
-d \\
\vdots \\
-d \\
d \\
\vdots \\
d
\end{array}\right] \\
& \text { Since } B \text { has exactly } d \text { ones in each row and column } \\
& \begin{array}{l}
=-d\left[\begin{array}{c}
1 \\
\vdots \\
1 \\
-1 \\
\vdots \\
-1
\end{array}\right] \quad \text { Factoring }-d \text { out } \\
=-d x \quad \text { By definition of } x
\end{array}
\end{aligned}
$$

Hence, $(1, \cdots, 1,-1, \cdots,-1)$ is an eigenvector with eigenvalue $-d$.
(13.2) Let $x \in \mathbb{F}_{2}^{n}$ be such that $x \neq \overrightarrow{0}$. Following the hint, let us fix an i with $0 \leq i \leq n$ such that $x_{i}=1$. Now, partition \mathbb{F}_{2}^{n} by defining the set $\mathcal{X}:=\left\{\left(y, y^{\prime}\right) \in \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{n} \mid y\right.$ and y^{\prime} differ only in their i-th coordinate $\}$. First note that \mathcal{X} covers \mathbb{F}_{2}^{n}, i.e., $\underset{\left(y, y^{\prime}\right) \in \mathcal{X}}{\bigcup}\{y\} \cup\left\{y^{\prime}\right\}=\mathbb{F}_{2}^{n}$. Since any vector belongs to only one pair it follows that $|\mathcal{X}|=\left|\mathbb{F}_{2}^{n}\right| / 2$.
Finally, note that by the construction of \mathcal{X}, we know that for each of its pairs: $\langle x, y\rangle \neq\left\langle x, y^{\prime}\right\rangle$ since y, y^{\prime} differ only in the i-th coordinate. Therefore, if $\langle x, y\rangle=0$, then $\left\langle x, y^{\prime}\right\rangle=1$. If, on the contrary $\langle x, y\rangle=1$, then $\left\langle x, y^{\prime}\right\rangle=0$. In any case, for each pair $\left(y, y^{\prime}\right)$ the vector x is orthogonal to either y or y^{\prime} but not both. By the previous argument about the cardinality of \mathcal{X}, it follows that x is orthogonal to half of vectors in \mathbb{F}_{2}^{n}.
(13.9) Let $n \in \mathbb{N}$. Define the set $\mathcal{F}_{n}:=\left\{f \in \mathbb{F}_{2}\left[x_{1}, \cdots, x_{n}\right]: d=\operatorname{deg}(f)<n, f \not \equiv 1\right\}$. From this set, define the following $\mathcal{V}_{d}:=\left\{v \in \mathbb{F}_{2}^{n}: v \neq 0\right.$, with at most $d+1$ ones $\}$. Now, consider the following statement:

$$
S(n):=\forall f \in \mathcal{F}_{n} / \exists v \in \mathcal{V}_{d}: f(v)=0
$$

We want to show that $S(n)$ holds for every $n \in \mathbb{N}$. The proof is by induction.

Base Case:

$S(0)$ is vacuously true since there are no polynomials of degree less than zero.
$S(1)$ is true since the only possible polynomials of degree less than 1 are: $f\left(x_{1}\right)=0$ or $f\left(x_{1}\right)=1$. However, we do not admit the case when $f \equiv 1$, so the only possibility is that $f\left(x_{1}\right)=0$. Obviously, there exists $x_{1} \in \mathcal{V}_{0}$ such that $f\left(x_{1}\right)=0$. Take either $x_{1}=0$ or $x_{1}=1$. Both have at most $d+1=0+1=1$ one.
Inductive Step: Suppose that $S(n)$ is true for $n \geq 0$. To prove $S(n+1)$ we proceed as follow:
Let $f \in \mathcal{F}_{n+1}$. We can factor f into two parts as follow:

$$
f\left(x_{1}, \cdots, x_{n+1}\right)=f_{0}\left(x_{1}, \cdots, x_{n}\right) x_{n+1}+f_{1}\left(x_{1}, \cdots, x_{n}\right)
$$

where $f_{0}, f_{1} \in \mathcal{F}_{n}$. Essentially, we have factor the polynomial f in $n+1$ variables as a sum of a polynomial in the variable x_{n+1} whose coefficient is a polynomial in n variables and the rest that does not depend on x_{n+1}. (For example, the polynomial $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2} x_{3}+x_{1} x_{3}+x_{2}=\left(x_{1} x_{2}+x_{1}\right) x_{3}+x_{2}$, in this case $f_{0}\left(x_{1}, x_{2}\right)=x_{1} x_{2}+x_{1}$ and $f_{1}\left(x_{1}, x_{2}\right)=x_{2}$. Note that since we are working in \mathbb{F}_{2}, each monomial has at most one occurrence of each variable). Now, for f it might be that $f_{1} \equiv 0$ or not, i.e., each monomial in f might have x_{n+1} or not. Let us handle these two cases separately:
If $f_{1} \equiv 0$, then $f\left(x_{1}, \cdots, x_{n+1}\right)=f_{0}\left(x_{1}, \cdots, x_{n}\right) x_{n+1}$.
In this case, by inductive hypothesis, there exists $\left(x_{1}, \cdots, x_{n}\right) \in \mathcal{V}_{n}$ such that $f_{0}\left(x_{1}, \cdots, x_{n}\right)=0$. Add a final coordinate to this vector with a zero or a one, i.e., $\left(x_{1}, \cdots, x_{n}, 0 / 1\right) \in \mathcal{V}_{n+1}$ and we have that $f\left(x_{1}, \cdots, x_{n+1}\right)=f_{0}\left(x_{1}, \cdots, x_{n}\right) x_{n+1}=0 \cdot 0 / 1=0$. So, in either case we obtain the result. Note that in the case where we add a one, $\left(x_{1}, \cdots, x_{n}, 1\right)$, we have at most $d+2$ ones where $d=\operatorname{deg}\left(f_{0}\right)$ so we are still in \mathcal{V}_{n+1} since the degree of f is one more than the degree of f_{0}.
If $f_{1} \not \equiv 0$ then, by inductive hypothesis, there exists $\left(x_{1}, \cdots, x_{n}\right) \in \mathcal{V}_{n}$ such that $f_{1}\left(x_{1}, \cdots, x_{n}\right)=0$. In this case, augment this vector by adding a final zero coordinate: $\left(x_{1}, \cdots, x_{n}, 0\right) \in \mathcal{V}_{n+1}$ to obtain the desired vector: $f\left(x_{1}, \cdots, x_{n}, 0\right)=f_{0}\left(x_{1}, \cdots, x_{n}\right) 0+f_{1}\left(x_{1}, \cdots, x_{n}\right)=0+0=0$. We do not add ones to this vector, so we can conclude that $\left(x_{1}, \cdots, x_{n}, 0\right) \in \mathcal{V}_{n+1}$ since $\left(x_{1}, \cdots, x_{n}\right) \in \mathcal{V}_{n}$.

In any case we have show that there exists $\left(x_{1}, \cdots, x_{n}, x_{n+1}\right) \in \mathcal{V}_{d}$ such that $f\left(x_{1}, \cdots, x_{n}, x_{n+1}\right)=0$.
(13.17) Let A_{1}, \cdots, A_{m} be a k-uniform, L-intersecting family of subsets of an n-element set. WLOG, suppose that $L=\left\{l_{1}, \cdots, l_{s}\right\}$.
For A_{i} with $i=1, \cdots, m$ let us define the polynomial f_{i} in n variables by:

$$
f_{i}(x)=\prod_{k: l_{k}<\left|A_{i}\right|}\left(<v_{i}, x>-l_{k}\right), \quad \text { where } x \in \mathbb{R}^{n}
$$

and, $A_{i} \mapsto v_{i}=\left(v_{i 1}, \cdots, v_{i n}\right)$, where $v_{i j}=1$ if $j \in A_{i}$, otherwise $v_{i j}=0$.
Observe that $f_{i}\left(v_{j}\right)=0$ for all $1 \leq j<i \leq m$, since the dot product of v_{i} with x will kill all x_{i} such that i does not appear in A_{i} and leave all others such that when v_{j} is replaced, the sum will equal l_{k} and thus $l_{k}-l_{k}=0$. Likewise, $f_{i}\left(v_{i}\right) \neq 0$ for all $1 \leq i \leq m$, since the number generated by the dot product will be greater than l_{k}. It follows from lemma 13.11 that the polynomials f_{1}, \cdots, f_{m} are linearly independent over \mathbb{R}. Note that $\operatorname{deg}\left(f_{i}\right) \leq s$ for all $i=1, \cdots, m$ since the maximum intersection size between two sets is l_{s}.

Now, associate with each subset I of $\{1, \cdots, n\}$ of cardinallity $|I| \leq s-1$, the following polynomial of degree at most s :

$$
g_{I}(x)=\left(\left(\sum_{j=1}^{n} x_{j}\right)-k\right) \prod_{i \in I} x_{i}
$$

Observe that for any subset $S \subseteq\{1, \cdots, n\}$:

$$
g_{I}(S) \neq 0 \Longleftrightarrow|S| \neq k \text { and } I \subseteq S
$$

Remark: We can state our goal at this point. We want to show that the set $\left\{f_{1}, \cdots, f_{m}\right\} \cup\left\{g_{I 1}, \cdots, g_{I t}\right\}$ is a linearly independent set and use the Linear Algebra bound in which if a set of cardinality m is linearly independent in V and $\operatorname{dim}(V)=n$ then $m \leq n$. By theorem 13.13 we know the f_{i} polynomials lie in the span of $\sum_{i=0}^{s}\binom{n}{i}$ many multilinear monomials. Also, since the degree of each g_{j} is at most s, these polynomials also lie in the same span. But there are $\sum_{i=0}^{s-1}\binom{n}{i}$ many g_{j} polynomials. Therefore, if the combination of f and g form a linearly independent set we get the whole space, from which we can conclude that $m \leq\binom{ n}{s}$, since a basis for this space is the combination of $\binom{n}{s}$ monomials. (end of remark)

Now, all that remains is filling in the details for the proof that the set $\left\{f_{1}, \cdots, f_{m}\right\} \cup\left\{g_{I 1}, \cdots, g_{I t}\right\}$ is a linearly independent. For this, take a linear combination and assume that is equal to zero:

$$
\sum_{i=1}^{m} \lambda_{i} f_{i}+\sum_{|I| \leq s-1} \mu_{I} g_{I}=0, \quad \text { for some } \lambda_{i}, \mu_{I} \in \mathbb{R}
$$

On the one hand, if we substitute any A_{j} for the variables in this equation, all the g_{I} 's will vanish since by definition of $g_{I}\left(A_{j}\right) \neq 0 \Longleftrightarrow\left|A_{i}\right| \neq k$ and $I \subseteq A_{j}$, but A_{j} belongs to a k-uniform family and hence $\left|A_{j}\right|=k$ for any j, which means that $g_{I}\left(A_{j}\right)=0$. On the other, if we substitute $f_{i}\left(A_{j}\right)$ such that $i \neq j$ then $f_{i}\left(A_{j}\right) \neq 0$. Therefore $\lambda_{j}=0$ for every $j=1, \cdots, m$.
What remains is a relation among the g_{I}. To show that this relation must be also trivial, assume the opposite and re-write this relation as:

$$
\mu_{I_{1}} g_{I_{1}}+\mu_{I_{2}} g_{I_{2}}+\cdots+\mu_{I_{t}} g_{I_{t}}=0
$$

with all $\mu_{i} \neq 0$ and $\left|I_{1}\right| \geq\left|I_{j}\right|$ for all $j>1$. Substitue the first set I_{1} for the variables:

$$
\mu_{I_{1}} g_{I_{1}}\left(I_{1}\right)+\mu_{I_{2}} g_{I_{2}}\left(I_{1}\right)+\cdots+\mu_{I_{t}} g_{I_{t}}\left(I_{1}\right)=0
$$

Since $I_{j} \nsubseteq I_{1}$ it follows that $g_{I_{i}}\left(I_{1}\right)=0$ for all but the first function. In fact, the only function that does not vanishes is $g_{I_{1}}$, so we are left with

$$
\mu_{I_{1}} g_{I_{1}}\left(I_{1}\right)=0 \Longleftrightarrow g_{I_{1}}\left(I_{1}\right)=0 \quad \text { since we assumed } \mu_{i} \neq 0
$$

But, $I_{1} \subseteq I_{1}$. Hence, by definition of $g_{I_{1}}$ it must be that $\left|I_{1}\right|=k$. But I_{1} is the biggest I so it follow that $\left|I_{1}\right|=s-1=k \Longleftrightarrow s=k+1$. But $|L|=s=k+1$, but how can you have an intersection of two k sets giving you a set with $k+1$ elements? This is the contradiction we wanted so it follows that the relation among the g 's is also trivial. This shows that the set $\left\{f_{1}, \cdots, f_{m}\right\} \cup\left\{g_{I 1}, \cdots, g_{I t}\right\}$ is a linearly independent and the result follows as explained in the above remark.

