609 Homework 4

Enrique Areyan April 18, 2013

(8.1) Let \mathcal{F} be an antichain consisting of sets of size at most $k \leq \frac{n}{2}$. Note that n is a fix number. The crucial point here is that the binomial coefficient is an increasing function over the interval $[0, \frac{n}{2}]$. By hypothesis, for any $A \in \mathcal{F}$ we have that $|A| \leq k \leq \frac{n}{2}$. Hence, for any given $A \in \mathcal{F}$:

$$\begin{pmatrix} n \\ k \end{pmatrix} \geq \begin{pmatrix} n \\ |A| \end{pmatrix}$$

$$\begin{pmatrix} n \\ k \end{pmatrix}^{-1} \leq \begin{pmatrix} n \\ |A| \end{pmatrix}^{-1}$$
Inverting both sides
$$\sum_{A \in \mathcal{F}} \begin{pmatrix} n \\ k \end{pmatrix}^{-1} \leq \sum_{A \in \mathcal{F}} \begin{pmatrix} n \\ |A| \end{pmatrix}^{-1}$$
Summing over all elements of \mathcal{F} in both sides
$$|\mathcal{F}| \begin{pmatrix} n \\ k \end{pmatrix}^{-1} \leq \sum_{A \in \mathcal{F}} \begin{pmatrix} n \\ |A| \end{pmatrix}^{-1}$$
Rewritting the left-hand side sum
$$|\mathcal{F}| \begin{pmatrix} n \\ k \end{pmatrix}^{-1} \leq \sum_{A \in \mathcal{F}} \begin{pmatrix} n \\ |A| \end{pmatrix}^{-1} \leq 1$$
IYM inequality
$$|\mathcal{F}| \begin{pmatrix} n \\ k \end{pmatrix}^{-1} \leq 1$$
Now, multiply by $\begin{pmatrix} n \\ k \end{pmatrix}$ both sides
$$|\mathcal{F}| \leq \begin{pmatrix} n \\ k \end{pmatrix}$$
Obtaining the result.

(8.4) Let $0 be a real number and <math>C \subset D$ be any two fixed subsets of $\{1, 2, ..., n\}$. Then, summing over all sets $C \subseteq A \subseteq D$ we obtain:

$$\sum_{C \subseteq A \subseteq D} p^{|A|} (1-p)^{n-|A|} = \sum_{k=0}^{|D|-|C|} {|D|-|C| \choose k} p^{|C|+k} (1-p)^{n-(|C|+k)}$$
 Making the change $|A| = |C| + k$

$$= p^{|C|} (1-p)^{n-|C|} \sum_{k=0}^{|D|-|C|} {|D|-|C| \choose k} \frac{p}{1-p} \cdot 1^{|D|-|C|-k}$$
 Rearranging terms

$$= p^{|C|} (1-p)^{n-|C|} (\frac{p}{1-p}+1)^{|D|-|C|}$$
 By Binomial Theorem

$$= p^{|C|} (1-p)^{n-|C|} (\frac{1}{1-p})^{|D|-|C|}$$
 Summing fraction

$$= p^{|C|} (1-p)^{n-|C|} (1-p)^{|C|-|D|}$$
 Rearranging power

$$= p^{|C|} (1-p)^{n-|D|}$$
 Summing exponents \Box

(8.5) Let \mathcal{F} be a k-uniform family, and suppose that it is intersection free.

Fix a $B_0 \in \mathcal{F}$ and form the family $\mathcal{C} = \{A \cap B_0 : A \in \mathcal{F}, A \neq B_0\}$. <u>Claim:</u> \mathcal{C} is an antichain over B_0 . <u>Proof:</u> suppose not: then there exists $C_1 \in \mathcal{C}$ and $C_2 \in \mathcal{C}$ such that $C_1 \subseteq C_2$. By definition $C_1 = A_i \cap B_0 \subseteq A_j \cap B_0 = C_2$, for some $A_i \in \mathcal{F}$ and $A_j \in \mathcal{F}$. But if $A_i \cap B_0 \subseteq A_j \cap B_0$ then $A_i \cap B_0 \subseteq A_j$ contradicting the hypothesis that \mathcal{F} is intersection free. Hence, \mathcal{C} is an antichain over B_0 . $\Box(of \ claim)$

Since \mathcal{C} is an antichain over B_0 where $|B_0| = k$, by Sperner's Theorem we know that $|\mathcal{C}| \leq \binom{k}{|k/2|}$.

Also, since \mathcal{F} is an intersection free family, then $|\mathcal{C}| = |\mathcal{F}| - 1$, i.e., the family \mathcal{C} contains as many elements (subsets) as \mathcal{F} except for B_0 . This is because $A_i \cap B_0 \not\subset A_j$ which means that for any C_1, C_2 in \mathcal{C} , $C_1 = A_i \cap B_0 \not\subset A_j \cap B_0 = C_2$, so these are all distinct sets inside \mathcal{C} . Therefore:

$$|\mathcal{C}| = |\mathcal{F}| - 1 \le {k \choose \lfloor k/2 \rfloor} \Longrightarrow |\mathcal{F}| \le 1 + {k \choose \lfloor k/2 \rfloor}$$

(13.1) Let x, y be orthogonal vectors in a vector space. Then:

- $$\begin{split} ||x+y||^2 &= \langle x+y,x+y \rangle \\ &= \langle x,x+y,x+y \rangle + \langle y,x+y \rangle \\ &= \langle x,x+y,x \rangle + \langle x+y,y \rangle \\ &= \langle x,x \rangle + \langle y,x \rangle + \langle x,y \rangle + \langle y,y \rangle \\ &= \langle x,x \rangle + \langle x,y \rangle + \langle x,y \rangle + \langle y,y \rangle \\ &= \langle x,x \rangle + \langle x,y \rangle + \langle y,x \rangle + \langle y,y \rangle \\ &= \langle x,x \rangle + \langle y,y \rangle + \langle y,x \rangle + \langle y,y \rangle \\ &= \langle x,x \rangle + \langle y,y \rangle + \langle y,y \rangle \\ &= \langle x,x \rangle + \langle y,y \rangle \\ &= \langle x,x \rangle + \langle y,y \rangle \\ &= ||x||^2 + ||y||^2 \end{split}$$
 Definition of norm Definition of norm
- (13.10) Let $h = \prod_{i \in S} x_i$ be a monomial of degree $d = |S| \le n 1$, and let a be a 0-1 vector with at least d + 1 ones. There are only two possibilities:
 - (i) $a_i = 0$ for some $i \in S$. In this case, h(b) = 0 for all $b \leq a$ (trivially).
 - (ii) $a_i = 1$ for all $i \in S$. Let us define $B = \{b \in \mathbb{F}^n : b \leq a, a_i = 1, \forall i \in S\}$, i.e., B contains all vectors below a but fixing all coordinates in S to be one. It suffices to show that |B| is an even number to show the result. Indeed, let k be the number of 1s other that the 1s fixed by a_i for $i \in S$. Since the total number of 1s is d + 1, we know that $k \geq 1$, i.e., there is at least one 1 in $a_j = 1$ for some $j \notin S$. Therefore, for each one of these 1s (outside of S) we can switch them to 0 to obtain a vector b such that $b \leq a$. There are 2^k ways of doing these. Hence,

$$\sum_{b\in B} h(b) = 2^k \cdot 1 \equiv 0 \pmod{2}$$

Since both cases (i) and (ii) cover all possibilities, we can conclude that $\sum_{b \leq a} h(b) = 0$.