609 Homework 4

Enrique Areyan
 April 18, 2013

(8.1) Let \mathcal{F} be an antichain consisting of sets of size at most $k \leq \frac{n}{2}$. Note that n is a fix number. The crucial point here is that the binomial coefficient is an increasing function over the interval $\left[0, \frac{n}{2}\right]$. By hypothesis, for any $A \in \mathcal{F}$ we have that $|A| \leq k \leq \frac{n}{2}$. Hence, for any given $A \in \mathcal{F}$:

$$
\begin{array}{rlrl}
\binom{n}{k} & \geq\binom{ n}{|A|} & \\
\binom{n}{k}^{-1} & \leq\binom{ n}{|A|}^{-1} & & \text { Inverting both sides } \\
\sum_{A \in \mathcal{F}}\binom{n}{k}^{-1} & \leq \sum_{A \in \mathcal{F}}\binom{n}{|A|}^{-1} & & \text { Summing over all elements of } \mathcal{F} \text { in both sides } \\
|\mathcal{F}|\binom{n}{k}^{-1} & \leq \sum_{A \in \mathcal{F}}\binom{n}{|A|}^{-1} & & \text { Rewritting the left-hand side sum } \\
|\mathcal{F}|\binom{n}{k}^{-1} & \leq \sum_{A \in \mathcal{F}}\binom{n}{|A|}^{-1} \leq 1 & \text { LYM inequality } \\
|\mathcal{F}|\binom{n}{k}^{-1} & \leq 1 & & \text { Now, multiply by }\binom{n}{k} \text { both sides } \\
& & \text { Obtaining the result. }
\end{array}
$$

(8.4) Let $0<p<1$ be a real number and $C \subset D$ be any two fixed subsets of $\{1,2, \ldots, n\}$. Then, summing over all sets $C \subseteq A \subseteq D$ we obtain:

$$
\begin{aligned}
\sum_{C \subseteq A \subseteq D} p^{|A|}(1-p)^{n-|A|} & =\sum_{k=0}^{|D|-|C|}\binom{|D|-|C|}{k} p^{|C|+k}(1-p)^{n-(|C|+k)} & & \text { Making the change }|A|=|C|+k \\
& =p^{|C|}(1-p)^{n-|C|} \sum_{k=0}^{|D|-|C|}\binom{|D|-|C|}{k}\left(\frac{p}{1-p}\right)^{k} \cdot 1^{|D|-|C|-k} & & \text { Rearranging terms } \\
& =p^{|C|}(1-p)^{n-|C|}\left(\frac{p}{1-p}+1\right)^{|D|-|C|} & & \text { By Binomial Theorem } \\
& =p^{|C|}(1-p)^{n-|C|}\left(\frac{1}{1-p}\right)^{|D|-|C|} & & \text { Summing fraction } \\
& =p^{|C|}(1-p)^{n-|C|}(1-p)^{|C|-|D|} & & \text { Rearranging power } \\
& =p^{|C|}(1-p)^{n-|D|} & & \text { Summing exponents }
\end{aligned}
$$

(8.5) Let \mathcal{F} be a k-uniform family, and suppose that it is intersection free.

Fix a $B_{0} \in \mathcal{F}$ and form the family $\mathcal{C}=\left\{A \cap B_{0}: A \in \mathcal{F}, A \neq B_{0}\right\}$. Claim: \mathcal{C} is an antichain over B_{0}. Proof: suppose not: then there exists $C_{1} \in \mathcal{C}$ and $C_{2} \in \mathcal{C}$ such that $C_{1} \subseteq C_{2}$. By definition $C_{1}=A_{i} \cap B_{0} \subseteq A_{j} \cap B_{0}=C_{2}$, for some $A_{i} \in \mathcal{F}$ and $A_{j} \in \mathcal{F}$. But if $A_{i} \cap B_{0} \subseteq A_{j} \cap B_{0}$ then $A_{i} \cap B_{0} \subseteq A_{j}$ contradicting the hypothesis that \mathcal{F} is intersection free. Hence, \mathcal{C} is an antichain over B_{0}.
\square (of claim)
Since \mathcal{C} is an antichain over B_{0} where $\left|B_{0}\right|=k$, by Sperner's Theorem we know that $|\mathcal{C}| \leq\binom{ k}{\lfloor k / 2\rfloor}$.

Also, since \mathcal{F} is an intersection free family, then $|\mathcal{C}|=|\mathcal{F}|-1$, i.e., the family \mathcal{C} contains as many elements (subsets) as \mathcal{F} except for B_{0}. This is because $A_{i} \cap B_{0} \not \subset A_{j}$ which means that for any C_{1}, C_{2} in \mathcal{C}, $C_{1}=A_{i} \cap B_{0} \not \subset A_{j} \cap B_{0}=C_{2}$, so these are all distinct sets inside \mathcal{C}. Therefore:

$$
|\mathcal{C}|=|\mathcal{F}|-1 \leq\binom{ k}{\lfloor k / 2\rfloor} \Longrightarrow|\mathcal{F}| \leq 1+\binom{k}{\lfloor k / 2\rfloor}
$$

(13.1) Let x, y be orthogonal vectors in a vector space. Then:

$$
\begin{aligned}
\|x+y\|^{2} & =<x+y, x+y> & & \text { Definition of norm } \\
& =\langle x, x+y>+\langle y, x+y> & & \text { Linearity in the first argument } \\
& =\langle x+y, x\rangle+\langle x+y, y> & & \text { Symmetry } \\
& =\langle x, x\rangle+<y, x>+<x, y>+<y, y> & & \text { Linearity in the first argument } \\
& =<x, x>+<x, y>+<y, x>+<y, y> & & \text { Symmetry } \\
& =<x, x\rangle+<y, y> & & \text { Since } x \perp y, \text { i.e., }\langle x, y>=<y, x>=0 \\
& =\|x\|^{2}+\|y\|^{2} & & \text { Definition of norm }
\end{aligned}
$$

(13.10) Let $h=\prod_{i \in S} x_{i}$ be a monomial of degree $d=|S| \leq n-1$, and let a be a 0-1 vector with at least $d+1$ ones. There are only two possibilities:
(i) $a_{i}=0$ for some $i \in S$. In this case, $h(b)=0$ for all $b \leq a$ (trivially).
(ii) $a_{i}=1$ for all $i \in S$. Let us define $B=\left\{b \in \mathbb{F}^{n}: b \leq a, a_{i}=1, \forall i \in S\right\}$, i.e., B contains all vectors below a but fixing all coordinates in S to be one. It suffices to show that $|B|$ is an even number to show the result. Indeed, let k be the number of 1 s other that the 1 s fixed by a_{i} for $i \in S$. Since the total number of 1 s is $d+1$, we know that $k \geq 1$, i.e., there is at least one 1 in $a_{j}=1$ for some $j \notin S$. Therefore, for each one of these 1s (outside of S) we can switch them to 0 to obtain a vector b such that $b \leq a$. There are 2^{k} ways of doing these. Hence,

$$
\sum_{b \in B} h(b)=2^{k} \cdot 1 \equiv 0(\bmod 2)
$$

Since both cases (i) and $(i i)$ cover all possibilities, we can conclude that $\sum_{b \leq a} h(b)=0$.

