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(8.1) Let F be an antichain consisting of sets of size at most k ≤ n
2 . Note that n is a fix number. The crucial point

here is that the binomial coefficient is an increasing function over the interval [0, n
2 ]. By hypothesis, for any

A ∈ F we have that |A| ≤ k ≤ n
2 . Hence, for any given A ∈ F :(

n

k

)
≥

(
n

|A|

)
(
n

k

)−1
≤

(
n

|A|

)−1
Inverting both sides

∑
A∈F

(
n

k

)−1
≤

∑
A∈F

(
n

|A|

)−1
Summing over all elements of F in both sides

|F|
(
n

k

)−1
≤

∑
A∈F

(
n

|A|

)−1
Rewritting the left-hand side sum

|F|
(
n

k

)−1
≤

∑
A∈F

(
n

|A|

)−1
≤ 1 LYM inequality

|F|
(
n

k

)−1
≤ 1 Now, multiply by

(
n

k

)
both sides

|F| ≤
(
n

k

)
Obtaining the result. �

(8.4) Let 0 < p < 1 be a real number and C ⊂ D be any two fixed subsets of {1, 2, ..., n}. Then, summing over all
sets C ⊆ A ⊆ D we obtain:

∑
C⊆A⊆D

p|A|(1− p)n−|A| =
|D|−|C|∑

k=0

(|D|−|C|
k

)
p|C|+k(1− p)n−(|C|+k) Making the change |A| = |C|+ k

= p|C|(1− p)n−|C|
|D|−|C|∑

k=0

(|D|−|C|
k

)
( p
1−p )k · 1|D|−|C|−k Rearranging terms

= p|C|(1− p)n−|C|( p
1−p + 1)|D|−|C| By Binomial Theorem

= p|C|(1− p)n−|C|( 1
1−p )|D|−|C| Summing fraction

= p|C|(1− p)n−|C|(1− p)|C|−|D| Rearranging power

= p|C|(1− p)n−|D| Summing exponents �

(8.5) Let F be a k-uniform family, and suppose that it is intersection free.

Fix a B0 ∈ F and form the family C = {A∩B0 : A ∈ F , A 6= B0}. Claim: C is an antichain over B0. Proof: sup-
pose not: then there exists C1 ∈ C and C2 ∈ C such that C1 ⊆ C2. By definition C1 = Ai∩B0 ⊆ Aj∩B0 = C2,
for some Ai ∈ F and Aj ∈ F . But if Ai ∩B0 ⊆ Aj ∩B0 then Ai ∩B0 ⊆ Aj contradicting the hypothesis that
F is intersection free. Hence, C is an antichain over B0. �(of claim)

Since C is an antichain over B0 where |B0| = k, by Sperner’s Theorem we know that |C| ≤
(

k
bk/2c

)
.
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Also, since F is an intersection free family, then |C| = |F| − 1, i.e., the family C contains as many ele-
ments (subsets) as F except for B0. This is because Ai ∩ B0 6⊂ Aj which means that for any C1, C2 in C,
C1 = Ai ∩B0 6⊂ Aj ∩B0 = C2, so these are all distinct sets inside C. Therefore:

|C| = |F| − 1 ≤
(

k

bk/2c

)
=⇒ |F| ≤ 1 +

(
k

bk/2c

)
�

(13.1) Let x, y be orthogonal vectors in a vector space. Then:

||x + y||2 = < x + y, x + y > Definition of norm
= < x, x + y > + < y, x + y > Linearity in the first argument
= < x + y, x > + < x + y, y > Symmetry
= < x, x > + < y, x > + < x, y > + < y, y > Linearity in the first argument
= < x, x > + < x, y > + < y, x > + < y, y > Symmetry
= < x, x > + < y, y > Since x ⊥ y, i.e., < x, y >=< y, x >= 0
= ||x||2 + ||y||2 Definition of norm �

(13.10) Let h =
∏

i∈S xi be a monomial of degree d = |S| ≤ n− 1, and let a be a 0-1 vector with at least d + 1 ones.
There are only two possibilities:

(i) ai = 0 for some i ∈ S. In this case, h(b) = 0 for all b ≤ a (trivially).

(ii) ai = 1 for all i ∈ S. Let us define B = {b ∈ Fn : b ≤ a, ai = 1,∀i ∈ S}, i.e., B contains all vectors below
a but fixing all coordinates in S to be one. It suffices to show that |B| is an even number to show the
result. Indeed, let k be the number of 1s other that the 1s fixed by ai for i ∈ S. Since the total number
of 1s is d + 1, we know that k ≥ 1, i.e., there is at least one 1 in aj = 1 for some j 6∈ S. Therefore, for
each one of these 1s (outside of S) we can switch them to 0 to obtain a vector b such that b ≤ a. There
are 2k ways of doing these. Hence, ∑

b∈B

h(b) = 2k · 1 ≡ 0 (mod 2)

Since both cases (i) and (ii) cover all possibilities, we can conclude that
∑
b≤a

h(b) = 0.
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