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(5.9) The following algorithms yields the desired result. If it does not, then interchange the roles of S and T .

Algorithm 1 Algorithm for finding a matching M ′′, given matching M and M ′ in a bipartite graph

Input: S ⊆ A, T ⊆ B,M,M ′

Output: M ′′ (a matching for S ∪ T )

M ′′ = ∅;S′ = ∅
for each s ∈ S do

Let {s, t} ∈M for some t ∈ B be the matching of s in M .
if t ∈ T then

M ′′ = M ′′ ∪ {{s, t}}
else

S′ = S′ ∪ {s}
end if

end for
for each t ∈ T do

if 6 ∃{s, t} ∈M ′′ (i.e., t is not matched by M ′′) then
Let {s, t} ∈M ′ for some s ∈ A be the matching of t in M ′.
M ′′ = M ′′ ∪ {{s, t}}

end if
end for
for each s′ ∈ S′ do

if 6 ∃{s′, t} ∈M ′′ (i.e., s′ ∈ S is not matched by M ′′) then
Let {s′, t} ∈M ′ for some t ∈ B be the matching of s′ in M .
M ′′ = M ′′ ∪ {{s′, t}}

end if
end for

The above algorithm partitions the vertices of S into two disjoint sets according to M : vertex connected to
members of T and the rest. Every vertex connected to a member of T is included in M ′′. The rest is added to
the set S′ to consider later. Next, every vertex of T that has not been matched before is matched according
to M ′, so every vertex of T is included in M ′′. Finally, the edges corresponding to vertices in S′ according to
M are included if and only if they have not been included before. Hence, every vertex in S is included. Note
that it is possible for vertices outside of S and T to be matched, but we know that at least all vertices in S
and T are matched. Moreover, the algorithm does not include non-disjoint edges since it includes vertices if
and only if one of the vertices has not been included before. The result is stored in M ′′.

(5.1) Suppose that S1, S2, · · · , Sm does not have a System of Distinct Representatives. Then, by Hall’s theorem,
the union Y = Si1 ∪ Si2 ∪ · · · ∪ Sik of some k (1 ≤ k ≤ m) sets contains strictly less than k elements. For
x ∈ Y , let dx be the number of sets containing x. Using the double counting argument in (1.10):

k · r ≤
k∑

j=1

|Sij | =
∑
x∈Y

dx ≤ r|Y | < k · r

From which we get that k · r < k · r, a clear contradiction. Hence, S1, S2, · · · , Sm have a SDR. �

(5.4) Since S1, S2, · · · , Sm satisfy Hall’s condition, they have a SDR. By hypothesis, we have that |S1∪· · ·∪Sk| = k.
Claim: the first k sets are singletons, each containing a distinct element, i.e., Si = {xi} for all i = 1, · · · , k
where xi 6= xj for all distinct 1 ≤ i, j ≤ k.
Proof: By definition of SDR is clear that each set must contain at least one element. Now, suppose that not
all Si, i = 1, · · · , k are singletons. Then there exists one set that contains more than one element. But then
|S1 ∪ · · · ∪ Sk| > k, a contradiction. � (of claim)
Finally, since S1, S2, · · · , Sm have a SDR, it follows that each one of Sk+1, · · · , Sm have at least one element
distinct from all other sets. Hence, none of these can lie entirely in the above union. �
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(5.6) Let G = (A,B,E) be a bipartite graph. Let a be the minimum degree of a vertex in A and b the maximum
degree of a vertex in B. Suppose that a ≥ b. Also, suppose (for a contradiction) that there does not exits a
matching of A into B. Define for each x ∈ A the set Sx = {y ∈ B : {x, y} ∈ E}. By theorem 5.6, it follows
that there exists a subset of k vertices from A with less than k neighbors, i.e., a set Y = Sxi1

∪ · · · ∪ Sxik
for

some k (1 ≤ k ≤ |A|) such that |Y | < k. For x ∈ Y , let dx be the number of sets containing x. But then, by
double counting argument (1.10):

k · a ≤
k∑

j=1

|Sxij
| =

∑
x∈Y

dx ≤ |Y |b < k · b

From which we conclude that a < b, in contradiction with our initial hypothesis. Hence, every subset ok k
vertices from A has at least k neighbors which means that G has a matching of A into B. �

(5.10) For I ⊆ A, let S(I) ⊆ B be the set of neighbors of I in G. On the one hand, let us show that the set
A′ = (A \ I) ∪ S(I) intersects all the members of F . Suppose not. Then there exists I ⊆ A and F ∈ F such
that A′ ∩ F = ∅. But then:

∅ = A′ ∩ F
= [(A \ I) ∪ S(I)] ∩ F By definition of A′

= [(A \ I) ∩ F ] ∪ [S(I) ∩ F ] By distributivity of sets
⇐⇒ (A \ I) ∩ F = ∅ and S(I) ∩ F = ∅ (1) Since union of empty sets yield the empty set

Since by hypothesis A intersects all the members of F and F in particular, we have that

(A \ I) ∩ F = ∅ ⇒ I ∩ F 6= ∅

Moreover, by hypothesis B intersects every set in F , so in particular it intersects F . Therefore, since |F | ≥ 2,
we can conclude that there exists a connection between a member of a ∈ I and b ∈ B, which means that
S(I) ∩ F 6= ∅, a contradiction with (1). It follows that the set A′ intersects all the members of F .

On the other hand, by Theorem 5.6 (Hall’s), to show that G has a matching it suffices to show that for
every k = 1, 2, ..., |A|, every subset of k vertices from A has at least k neighbors. Once again, suppose that
this is not the case. Then, there exists ∅ 6= I ⊆ A such that |S(I)| < |I|. Take this set I and consider A′ as
defined before but for this particular I, i.e., A′ = (A \ I) ∪ S(I). We showed that A′ must intersect every
member of F . But then, since A ∩ B = ∅, we have that |A′| = |A| − |I| + |S(I)| < |A|, contradicting the
assumption that no set of fewer than |A| elements intersects every member of F . Hence, Hall’s theorem hold,
which means that G has a matching of A into B, but since |A| = |B|, this is a perfect matching. �

(6.2) Suppose that F has a sunflower with k petals. Let S1, · · · , Sk be the petals. The core Y is such that
0 ≤ |Y | ≤ s− 1, but this is not possible. Suppose |Y | = 0. By definition of sunflower S1 ∩ S2 ∩ · · · ∩ Sk = ∅,
but this implies that |Vi| = k, for all 1 ≤ i ≤ s, a contradiction. Likewise, suppose |Y | = 1. By definition of
sunflower S1 \ Y ∩ S2 \ Y ∩ · · · ∩ Sk \ Y = ∅. But then, assuming that this 1 element came from Vi we must
have that |Vj | = k for any j 6= i, a contradiction.
In general, for any candidate core Y such that 0 ≤ |Y | ≤ s−1, let us define I := {j : y ∈ Vj for y ∈ Y }. Note
that since the sets Vi are pairwise disjoints we have that |I| ≤ s− 1. But then, it is the case that |Vl| = k for
any l /∈ I, a contradiction since there is at least one set V such that |V | = k.
Note that if |Y | = s, then either Y contains distinct elements from each of the Vi sets, in which case Y ∈ F ,
and it cannot possibly be a valid core; or Y does not contain elements from all distinct sets and the previous
analysis applies, i.e., there is at least one Vi such that |Vi| = k, a contradiction.
Therefore, the family F does not contain a sunflower with k petals. �

(6.3)

For Lemma 6.3: It suffices to show that for the family F as defined in 6.2, the common part of every k members of F
has at least s elements. Recall that F is an s-uniform family such that |F| = (k − 1)s.
Suppose to the contrary that there exists k sets in F such that the common part of these sets have less
than s elements, i.e., S1, · · · , Sk such that |Y | = |

⋃
i6=j

Si∩Sj | < s. By definition, S1 \Y ∩· · ·∩Sk \Y = ∅

Since |Y | < s ⇐⇒ 0 ≤ |Y | ≤ s − 1. Now apply the same reasoning as in 6.2 to conclude that this is
not possible (e.g., if |Y | = 0 then |Vi| = k, for all 1 ≤ i ≤ s, etc). Therefore, the common part of every
k members of F has at least s elements. This is the optimal bound since if we add one more set to F ,
we get that |F| > (k − 1)s, and then apply Lemma 6.3 to obtain the desired result. �
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For Lemma 6.4: It suffices to show that the family F as defined in 6.2 has no flower with k petals. As before, Recall that
F is an s-uniform family such that |F| = (k − 1)s.
Suppose to the contrary that F has a flower with k petals and a core Y . Just like before, we know
that 0 ≤ |Y | ≤ s − 1. This is because we know that if |Y | = s, then Y contains a distinct element
from each Vi or it repeats element from some Vi. On the one hand, If it repeats an element, then
Y 6⊆ F for any F ∈ F . Hence ∅ ⊆ FY and then τ(FY ) = 0 < k. On the other, if Y contains a
distinct element from each Vi, then Y ∈ F and then ∅ ⊂ FY and then τ(FY ) = 0 < k. Either case is
not possible, so 0 ≤ |Y | ≤ s−1. But any of these are also not possible. Let us explore some of these cases:

Suppose |Y | = 0. Then FY = F , which means that τ(Fy) = τ(F) = k − 1 < k, just take one of
the Vi as your blocking set.

Suppose that |Y | = 1. Then this one element must come from one Vi. But then, τ(FY ) = k − 1 < k,
just take one of the Vj as your blocking set subject to i 6= j (take another set besides the one where the
element of Y came from).

In general, let |Y | = n, 0 ≤ n ≤ s − 1. Define I := {j : y ∈ Vj for y ∈ Y }. Then, take as your
blocking set any set Vl such that l 6∈ I. But then, τ(FY ) = |Vl| = k − 1 < k, a contradiction.

Therefore, F has no sunflower with k petals. This is the optimal bound since if we add one more
set to F , we get that |F| > (k − 1)s, and then apply Lemma 6.4 to obtain the desired result. �

(6.6) Suppose that F has a sunflower with k petals. Then, since |Si| = s for all i = 1, ..., k and S1\Y ∩· · ·∩Sk\Y = ∅
the number of elements used in this sunflower is k(s − |Y |) + |Y |, where Y is the sunflower’s core and
0 ≤ |Y | ≤ s − 1. In words, add to the number of elements in all petals the number of elements in the core.
Clearly, the number of elements in the sunflower cannot exceed the total number of elements used to build the
sets in the family F , i.e., n ≥ k(s−|Y |)+|Y | = ks−|Y |(k−1). Also, by hypothesis, n−k+1 < s⇒ n < s+k−1.
But then,

s+ k − 1 > n ≥ ks− |Y |(k − 1)⇒ s+ k − 1 > ks− |Y |(k − 1)

Subtract s from both sides of the last inequality to get k − 1 > s(k − 1)− |Y |(k − 1) = (k − 1)(s− |Y |).
So, k − 1 > (k − 1)(s − |Y |), but since 0 ≤ |Y | ≤ s − 1, we get a contradiction, showing that F has no
sunflower with k petals. �
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