MAT 307: Combinatorics

Lecture 12: Extremal results on finite sets

Instructor: Jacob Fox

1 Largest antichains

Suppose we are given a family \mathcal{F} of subsets of $[n]$. We call \mathcal{F} an antichain, if there are no two sets $A, B \in \mathcal{F}$ such that $A \subset B$. For example, $\mathcal{F}=\{S \subseteq[n]:|S|=k\}$ is an antichain of size $\binom{n}{k}$. How large can an antichain be? The choice of $k=\lfloor n / 2\rfloor$ gives an antichain of size $\binom{n}{n / 2\rfloor}$. In 1928, Emanuel Sperner proved that this is the largest possible antichain that we can have. In fact, we prove a slightly stronger statement.

Theorem 1 (Sperner's theorem). For any antichain $\mathcal{F} \subset 2^{[n]}$,

$$
\sum_{A \in \mathcal{F}} \frac{1}{\binom{n}{|A|}} \leq 1
$$

Since $\binom{n}{|A|} \leq\binom{ n}{\lfloor n / 2\rfloor}$ for any $A \subseteq[n]$, we conclude that $|\mathcal{F}| \leq\binom{ n}{\lfloor n / 2\rfloor}$.
Proof. We present a very short proof due to Lubell. Consider a random permutation $\pi:[n] \rightarrow[n]$. We compute the probability of the event that a prefix of this permutation $\left\{\pi_{1}, \ldots, \pi_{k}\right\}$ is in \mathcal{F} for some k. Note that this can happen only for one value of k, since otherwise \mathcal{F} would not be an antichain.

For each particular set $A \in \mathcal{F}$, the probability that $A=\left\{\pi_{1}, \ldots, \pi_{|A|}\right\}$ is equal to $k!(n-k)!/ n!$, corresponding to all possible orderings of A and $[n] \backslash A$. By the property of an antichain, these events for different sets $A \in \mathcal{F}$ are disjoint, and hence

$$
\operatorname{Pr}\left[\exists A \in \mathcal{F} ; A=\left\{\pi_{1}, \ldots, \pi_{|A|}\right\}\right]=\sum_{A \in \mathcal{F}} \operatorname{Pr}\left[A=\left\{\pi_{1}, \ldots, \pi_{|A|}\right\}\right]=\sum_{A \in \mathcal{F}} \frac{|A|!(n-|A|)!}{n!}=\sum_{A \in \mathcal{F}} \frac{1}{\binom{n}{|A|}}
$$

The fact that any probability is at most 1 concludes the proof.
This has the following application. We note that the theorem actually holds for arbitrary vectors and any ball of radius 1 , but we stick to the 1 -dimensional case for simplicity.

Theorem 2. Let $a_{1}, a_{2}, \ldots, a_{n}$ be real numbers of absolute value $\left|a_{i}\right| \geq 1$.. Consider the 2^{n} linear combinations $\sum_{i=1}^{n} \epsilon_{i} a_{i}, \epsilon_{i} \in\{-1,+1\}$. Then the number of sums which are in any interval $(x-$ $1, x+1)$ is at most $\binom{n}{\lfloor n / 2\rfloor}$.

An interpretation of this theorem is that for any random walk on the real line, where the i-th step is either $+a_{i}$ or $-a_{i}$ at random, the probability that after n steps we end up in some fixed interval $(x-1, x+1)$ is at $\operatorname{most}\binom{n}{\lfloor n / 2\rfloor} / 2^{n}=O(1 / \sqrt{n})$.

Proof. We can assume that $a_{i} \geq 1$. For $\epsilon \in\{-1,+1\}^{n}$, let $I=\left\{i \in[n]: \epsilon_{i}=+1\right\}$. If $I \subset I^{\prime}$, and ϵ^{\prime} corresponds to I^{\prime}, we have

$$
\sum \epsilon_{i}^{\prime} a_{i}-\sum \epsilon_{i} a_{i}=2 \sum_{i \in I^{\prime} \backslash I} a_{i} \geq 2\left|I^{\prime} \backslash I\right|
$$

Therefore, if I is a proper subset of I^{\prime} then only one of them can correspond to a sum inside $(x-1, x+1)$. Consequently, the sums inside $(x-1, x+1)$ correspond to an antichain and we can have at most $\binom{n}{\lfloor n / 2\rfloor}$ such sums.

Theorem 3 (Bollobás, 1965). If A_{1}, \ldots, A_{m} and B_{1}, \ldots, B_{m} are two sequences of sets such that $A_{i} \cap B_{j}=\emptyset$ if and only if $i=j$, then

$$
\sum_{i=1}^{m}\binom{\left|A_{i}\right|+\left|B_{i}\right|}{\left|A_{i}\right|}^{-1} \leq 1
$$

Note that if A_{1}, \ldots, A_{m} is an antichain on $[n]$ and we set $B_{i}=[n] \backslash A_{i}$, we get a system of sets satisfying the conditions above. Therefore this is a generalization of Sperner's theorem.

Proof. Suppose that $A_{i}, B_{i} \subseteq[n]$ for some n. Again, we consider a random permutation $\pi:[n] \rightarrow$ [n]. Here we look at the event that there is some pair $\left(A_{i}, B_{i}\right)$ such that $\pi\left(A_{i}\right)<\pi\left(B_{i}\right)$, in the sense that $\pi(a)<\pi(b)$ for all $a \in A_{i}, b \in B_{i}$. For each particular pair $\left(A_{i}, B_{i}\right)$, the probability of this event is $\left|A_{i}\right|!\left|B_{i}\right|!/\left(\left|A_{i}\right|+\left|B_{i}\right|\right)!$.

On the other hand, suppose that $\pi\left(A_{i}\right)<\pi\left(B_{i}\right)$ and $\pi\left(A_{j}\right)<\pi\left(B_{j}\right)$. Hence, there are points x_{i}, x_{j} such that the two pairs are separated by x_{i} and x_{j}, respectively. Depending on the relative order of x_{i}, x_{j}, we get either $A_{i} \cap B_{j}=\emptyset$ or $A_{j} \cap B_{i}=\emptyset$, which contradicts our assumptions. Therefore, the events for different pairs $\left(A_{i}, B_{i}\right)$ are disjoint. We conclude that

$$
\operatorname{Pr}\left[\exists i ;\left(A_{i}, B_{i}\right) \text { are separated in } \pi\right]=\sum_{i=1}^{m} \frac{\left|A_{i}\right|!\left|B_{i}\right|!}{\left(\left|A_{i}\right|+\left|B_{i}\right|\right)!}=\sum_{i=1}^{m}\binom{\left|A_{i}\right|+\left|B_{i}\right|}{\left|A_{i}\right|}^{-1} \leq 1
$$

This theorem has an application in the following setting. For a collection of sets $\mathcal{F} \subseteq 2^{X}$, we call $T \subseteq X$ a transversal of \mathcal{F}, if $\forall A \in \mathcal{F} ; A \cap T \neq \emptyset$. One question is, what is the smallest transversal for a given collection of sets \mathcal{F}. We denote the size of the smallest transversal by $\tau(\mathcal{F})$.

A set system \mathcal{F} is called τ-critical, if removing any member of \mathcal{F} decreases $\tau(\mathcal{F})$. An example of a τ-critical system is the collection $\mathcal{F}=\binom{[k+\ell]}{k}$ of all subsets of size k out of $k+\ell$ elements. The smallest transversal has size $\ell+1$, because any set of size $\ell+1$ intersects every member of \mathcal{F}, whereas no set of size ℓ is a transversal, since its complement is a member of \mathcal{F}. Moreover, removing any set $A \in \mathcal{F}$ decreases $\tau(\mathcal{F})$ to ℓ, because then \bar{A} is a transversal of $\mathcal{F} \backslash\{A\}$. This is an example of a τ-critical system of size $\binom{k+\ell}{k}$, where $\tau(\mathcal{F})=\ell+1$ and $\forall A \in \mathcal{F} ;|A|=k$.

Observe that if $\mathcal{F}=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ is τ-critical and $\tau(\mathcal{F})=\ell+1$, then there is a transversal $B_{i},\left|B_{i}\right|=\ell$ for each i, which intersects each $A_{j}, j \neq i$. However, B_{i} does not intersect A_{i}, otherwise it would also be a transversal of \mathcal{F}. Therefore, Theorem 3 implies the following.
Theorem 4. Suppose \mathcal{F} is a τ-critical system, where $\tau(\mathcal{F})=\ell+1$ and each $A \in \mathcal{F}$ has size k. Then

$$
|\mathcal{F}| \leq\binom{ k+\ell}{k}
$$

2 Intersecting families

Here we consider a different type of family of subsets. We call $\mathcal{F} \subseteq 2^{[n]}$ intersecting, if $A \cap B \neq \emptyset$ for any $A, B \in \mathcal{F}$. The question what is the largest such family is quite easy: For any set A, we can take only one of A and $[n] \backslash A$. Conversely, we can take exactly one set from each pair like this - for example all the sets containing element 1. Hence, the largest intersecting family of subsets of [n] has size exactly 2^{n-1}.

A more interesting question is, how large can be an intersecting family of sets of size k ? We assume $k \leq n / 2$, otherwise we can take all k-sets.

Theorem 5 (Erdős-Ko-Rado). For any $k \leq n / 2$, the largest size of an intersecting family of subsets of $[n]$ of size k is $\binom{n-1}{k-1}$.

Observe that an intersecting family of size $\binom{n-1}{k-1}$ can be constructed by taking all k-sets containing element 1. To prove the upper bound, we use an elegant argument of Katona. First, we prove the following lemma.

Lemma 1. Consider a circle divided into n intervals by n points. Let $k \leq n / 2$. Suppose we have "arcs" A_{1}, \ldots, A_{t}, each A_{i} containing k successive intervals around the circle, and each pair of arcs overlapping in at least one interval. Then $t \leq k$.

Proof. No point x can be the endpoint of two arcs - then they are either the same arc, or two arcs starting from x in opposite directions, but then they do not share any interval.

Now fix an arc A_{1}. Every other arc must intersect A_{1}, hence it must start at one of the $k-1$ points inside A_{1}. Each such endpoint can have at most one arc.

Now we proceed with the proof of Erdős-Ko-Rado theorem.
Proof. Let \mathcal{F} be an intersecting family of sets of size k. Consider a random permutation $\pi:[n] \rightarrow$ $[n]$. We consider each set $A \in \mathcal{F}$ mapped onto the circle as above, by associating $\pi(A)$ with the respective set of intervals on the circle. Let X be the number of sets $A \in \mathcal{F}$ which are mapped onto contiguous arcs $\pi(A)$ on the circle. For each set $A \in \mathcal{F}$, the probability that $\pi(A)$ is a contiguous arc is $n k!(n-k)!/ n!=n /\binom{n}{k}$. Therefore,

$$
\mathbf{E}[X]=\sum_{A \in \mathcal{F}} \operatorname{Pr}[\pi(A) \text { is contiguous }]=\frac{n}{\binom{n}{k}}|\mathcal{F}|
$$

On the other hand, we know by our lemma that $\pi(A)$ can be contiguous for at most k sets at the same time, because \mathcal{F} is an intersecting family. Therefore,

$$
\mathbf{E}[X] \leq k
$$

From these two bounds, we obtain

$$
|\mathcal{F}| \leq \frac{k}{n}\binom{n}{k}=\binom{n-1}{k-1}
$$

