
MAT 307: Combinatorics

Lecture 12: Extremal results on finite sets

Instructor: Jacob Fox

1 Largest antichains

Suppose we are given a family F of subsets of [n]. We call F an antichain, if there are no two sets
A,B ∈ F such that A ⊂ B. For example, F = {S ⊆ [n] : |S| = k} is an antichain of size

(
n
k

)
. How

large can an antichain be? The choice of k = bn/2c gives an antichain of size
(

n
bn/2c

)
. In 1928,

Emanuel Sperner proved that this is the largest possible antichain that we can have. In fact, we
prove a slightly stronger statement.

Theorem 1 (Sperner’s theorem). For any antichain F ⊂ 2[n],

∑

A∈F

1(
n
|A|

) ≤ 1.

Since
(

n
|A|

) ≤ (
n

bn/2c
)

for any A ⊆ [n], we conclude that |F| ≤ (
n

bn/2c
)
.

Proof. We present a very short proof due to Lubell. Consider a random permutation π : [n] → [n].
We compute the probability of the event that a prefix of this permutation {π1, . . . , πk} is in F for
some k. Note that this can happen only for one value of k, since otherwise F would not be an
antichain.

For each particular set A ∈ F , the probability that A = {π1, . . . , π|A|} is equal to k!(n− k)!/n!,
corresponding to all possible orderings of A and [n] \ A. By the property of an antichain, these
events for different sets A ∈ F are disjoint, and hence

Pr[∃A ∈ F ;A = {π1, . . . , π|A|}] =
∑

A∈F
Pr[A = {π1, . . . , π|A|}] =

∑

A∈F

|A|!(n− |A|)!
n!

=
∑

A∈F

1(
n
|A|

) .

The fact that any probability is at most 1 concludes the proof.

This has the following application. We note that the theorem actually holds for arbitrary vectors
and any ball of radius 1, but we stick to the 1-dimensional case for simplicity.

Theorem 2. Let a1, a2, . . . , an be real numbers of absolute value |ai| ≥ 1.. Consider the 2n linear
combinations

∑n
i=1 εiai, εi ∈ {−1, +1}. Then the number of sums which are in any interval (x −

1, x + 1) is at most
(

n
bn/2c

)
.

An interpretation of this theorem is that for any random walk on the real line, where the i-th
step is either +ai or −ai at random, the probability that after n steps we end up in some fixed
interval (x− 1, x + 1) is at most

(
n

bn/2c
)
/2n = O(1/

√
n).
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Proof. We can assume that ai ≥ 1. For ε ∈ {−1, +1}n, let I = {i ∈ [n] : εi = +1}. If I ⊂ I ′, and ε′

corresponds to I ′, we have
∑

ε′iai −
∑

εiai = 2
∑

i∈I′\I
ai ≥ 2|I ′ \ I|.

Therefore, if I is a proper subset of I ′ then only one of them can correspond to a sum inside
(x− 1, x + 1). Consequently, the sums inside (x− 1, x + 1) correspond to an antichain and we can
have at most

(
n

bn/2c
)

such sums.

Theorem 3 (Bollobás, 1965). If A1, . . . , Am and B1, . . . , Bm are two sequences of sets such that
Ai ∩Bj = ∅ if and only if i = j, then

m∑

i=1

(|Ai|+ |Bi|
|Ai|

)−1

≤ 1.

Note that if A1, . . . , Am is an antichain on [n] and we set Bi = [n] \Ai, we get a system of sets
satisfying the conditions above. Therefore this is a generalization of Sperner’s theorem.

Proof. Suppose that Ai, Bi ⊆ [n] for some n. Again, we consider a random permutation π : [n] →
[n]. Here we look at the event that there is some pair (Ai, Bi) such that π(Ai) < π(Bi), in the
sense that π(a) < π(b) for all a ∈ Ai, b ∈ Bi. For each particular pair (Ai, Bi), the probability of
this event is |Ai|!|Bi|!/(|Ai|+ |Bi|)!.

On the other hand, suppose that π(Ai) < π(Bi) and π(Aj) < π(Bj). Hence, there are points
xi, xj such that the two pairs are separated by xi and xj , respectively. Depending on the relative
order of xi, xj , we get either Ai ∩ Bj = ∅ or Aj ∩ Bi = ∅, which contradicts our assumptions.
Therefore, the events for different pairs (Ai, Bi) are disjoint. We conclude that

Pr[∃i; (Ai, Bi) are separated in π] =
m∑

i=1

|Ai|!|Bi|!
(|Ai|+ |Bi|)! =

m∑

i=1

(|Ai|+ |Bi|
|Ai|

)−1

≤ 1.

This theorem has an application in the following setting. For a collection of sets F ⊆ 2X , we call
T ⊆ X a transversal of F , if ∀A ∈ F ; A ∩ T 6= ∅. One question is, what is the smallest transversal
for a given collection of sets F . We denote the size of the smallest transversal by τ(F).

A set system F is called τ -critical, if removing any member of F decreases τ(F). An example
of a τ -critical system is the collection F =

([k+`]
k

)
of all subsets of size k out of k + ` elements.

The smallest transversal has size ` + 1, because any set of size ` + 1 intersects every member of
F , whereas no set of size ` is a transversal, since its complement is a member of F . Moreover,
removing any set A ∈ F decreases τ(F) to `, because then Ā is a transversal of F \ {A}. This is
an example of a τ -critical system of size

(
k+`
k

)
, where τ(F) = ` + 1 and ∀A ∈ F ; |A| = k.

Observe that if F = {A1, A2, . . . , An} is τ -critical and τ(F) = ` + 1, then there is a transversal
Bi, |Bi| = ` for each i, which intersects each Aj , j 6= i. However, Bi does not intersect Ai, otherwise
it would also be a transversal of F . Therefore, Theorem 3 implies the following.

Theorem 4. Suppose F is a τ -critical system, where τ(F) = ` + 1 and each A ∈ F has size k.
Then

|F| ≤
(

k + `

k

)
.
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2 Intersecting families

Here we consider a different type of family of subsets. We call F ⊆ 2[n] intersecting, if A ∩ B 6= ∅
for any A,B ∈ F . The question what is the largest such family is quite easy: For any set A, we
can take only one of A and [n] \A. Conversely, we can take exactly one set from each pair like this
- for example all the sets containing element 1. Hence, the largest intersecting family of subsets of
[n] has size exactly 2n−1.

A more interesting question is, how large can be an intersecting family of sets of size k? We
assume k ≤ n/2, otherwise we can take all k-sets.

Theorem 5 (Erdős-Ko-Rado). For any k ≤ n/2, the largest size of an intersecting family of subsets
of [n] of size k is

(
n−1
k−1

)
.

Observe that an intersecting family of size
(
n−1
k−1

)
can be constructed by taking all k-sets con-

taining element 1. To prove the upper bound, we use an elegant argument of Katona. First, we
prove the following lemma.

Lemma 1. Consider a circle divided into n intervals by n points. Let k ≤ n/2. Suppose we have
“arcs” A1, . . . , At, each Ai containing k successive intervals around the circle, and each pair of arcs
overlapping in at least one interval. Then t ≤ k.

Proof. No point x can be the endpoint of two arcs - then they are either the same arc, or two arcs
starting from x in opposite directions, but then they do not share any interval.

Now fix an arc A1. Every other arc must intersect A1, hence it must start at one of the k − 1
points inside A1. Each such endpoint can have at most one arc.

Now we proceed with the proof of Erdős-Ko-Rado theorem.

Proof. Let F be an intersecting family of sets of size k. Consider a random permutation π : [n] →
[n]. We consider each set A ∈ F mapped onto the circle as above, by associating π(A) with the
respective set of intervals on the circle. Let X be the number of sets A ∈ F which are mapped onto
contiguous arcs π(A) on the circle. For each set A ∈ F , the probability that π(A) is a contiguous
arc is nk!(n− k)!/n! = n/

(
n
k

)
. Therefore,

E[X] =
∑

A∈F
Pr[π(A) is contiguous] =

n(
n
k

) |F|.

On the other hand, we know by our lemma that π(A) can be contiguous for at most k sets at the
same time, because F is an intersecting family. Therefore,

E[X] ≤ k.

From these two bounds, we obtain

|F| ≤ k

n

(
n

k

)
=

(
n− 1
k − 1

)
.
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