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20.2. DIMENSION AND POLYNOMIALS

The dimension of a vector space is an upper bound on the number of

vectors in any linearly independent set. This fundamental and innocu-

ous statement in linear algebra can be very effective in solving extremal

problems in combinatorics. The art in applying this method is in design-

ing an appropriate vector space in which the desired set corresponds to

linearly independent vectors.

Often we use a space consisting of polynomials, viewing a polyno-

mial as a linear combination of monomials. The unpublished book Babai–

Frankl [1992] provides a thorough introduction to the resulting “polyno-

mial method”, along with many other aspects of the use of linear algebra

in combinatorics.

THE POLYNOMIAL METHOD

Following Babai–Frankl [1992], we begin with two easy examples.

They illustrate both the eleganceof dimensionality proofs and the process

of turning extremal problems into dimension problems.

20.2.1. Example. Eventown vs. Oddtown. A town with n people contains

many clubs such that every two clubs have an even number of common

members. How many clubs can there be if all the clubs have even size?

How many if all the clubs have odd size?

When the clubs have even size (“Eventown”), it is easy to form 2⌊n/2⌋
clubs. Simply group the residents into pairs and form each club as a sub-

set of these pairs. In fact, this is optimal (Exercise 5).
When the clubs have odd size (“Oddtown”), we can form n clubs by

using clubs of size 1, or clubs of size n − 1, or other constructions. In

fact, there are between 2n(n+2)/8/(n!)2 and 2n2

/n! nonisomorphic construc-

tions of size n (Exercise 2). These are much smaller than the Eventown

constructions, but nevertheless we show next that they are optimal.

The incidence vector u of a subset A of [n] is the binary n-tuple

recording membership in A: ui = 1 if i ∈ A, otherwise ui = 0. The sim-

ple but important observation that allows us to convert problems about

intersections of sets into algebraic problems is that if u and v are the in-

cidence vectors of subsets A and B on [n], then u · v = |A∩ B|, where u · v
is the ordinary dot product of u and v: u · v =∑n

i=1 uivi.

20.2.2. THEOREM. (Berlekamp [1969]) If F is a family of odd-size sub-

sets of [n] whose pairwise intersections have even size, then |F| ≤ n.

Proof: Let F = {A1 , . . . , Am}. It suffices to show that the correspond-

ing incidence vectors u(1) , . . . , u(m) are linearly independent, since every

n-dimensional vector space has at most n linearly independent vectors.

The proof is simplest when we use F2 as the field over which the space is

defined, since we have conditions on the parity of the intersections. Thus

all our numerical computations with vectors in Fn
2 are modulo 2.

The conditions on the sizes of the sets and their pairwise intersec-

tions require that u(i) · u(i) ≡ 1 for 1 ≤ i ≤ m and u(i) · u(j) ≡ 0 for i 6= j .

To prove that the vectors are linearly independent, we form an equa-

tion of dependence: ∑m

i=1 ciu
(i)
= 0. When we take the dot product of both

sides with u(j), the conditions on the dot products imply that the equation

becomes cju
(j) · u(j) = 0 and then cj = 0.

The argument made above using the dot product extends to more gen-

eral functions. When u is a fixed n-tuple in Fn, we can view u · x as a

polynomial function of x; that is, u · x ∈ F[x1 , . . . , xn]. We obtain a poly-

nomial in n variables; it has degree 1 in each variable. The general form

of the preceding argument is the following.

20.2.3. PROPOSITION. (The Diagonal Criterion) Let f1 , . . . ,fm be

functions in a linear space. If v(1) , . . . , v(m) are points such that

fi(v(i)) 6= 0 for 1 ≤ i ≤ m and fi(v(j)) = 0 for i 6= j , then f1 , . . . ,fm are

linearly independent.

Proof: Consider c1 , . . . , cm such that∑m

i=1 cifi is identically zero. Evalu-

ating∑m

i=1 cifi at v(j) yields cjfj(v(j)) = 0 and hence cj = 0.

Our next application of the diagonal criterion shows the polynomial

method more fully.

20.2.4. DEFINITION. A k-distance set is a set of points such that the

distances between points lie in a set of at most k numbers.
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For example, a one-distance set in Rn must lie at the vertices of a

simplex, so the size of a 1-distance set in Rn is at most n− 1. For a two-

distance set, Exercise 6 requests a construction for a lower bound of (n+1
2
).

We next prove an upper bound that is not much larger.

20.2.5. THEOREM. (Larman–Rogers–Seidel[1977])Every two-distance

set in Rn has at most (n+ 1)(n+ 4)/2 points.

Proof: Let {v(1) , . . . , v(m)} be a two-distance set, and let c and d be the

two distances. To avoid square roots, we compute with squared distances.

Write ‖x − y‖2 for the square of the distance between x and y; it equals∑n

j=1
(xj − yj)2.

Define polynomialsf1 , . . . ,fm by fi(x)= (‖x − v(i)‖2 − c2)(‖x − v(i)‖2 − d2).
Note that fi(v(i)) = c2d2 6= 0, and fi(v(j)) = 0 for i 6= j , since ‖v(j) − v(i)‖ ∈{c , d}. By the diagonal criterion, f1 , . . . ,fm are linearly independent.

To obtain a good bound on m, we want to capture f1 , . . . ,fm within

a small subspace of R[x1 , . . . , xn]. Written as a polynomial, we have

fi(x)= (
n∑

k=1

(xk − v
(i)
k
)2 − c2)(

n∑
k=1

(xk − v
(i)
k
)2 − d2) .

When expanded completely, the total degree in each monomial term is

at most 4. The polynomial is a linear combination of such monomials.

The number of ways to distribute total degree at most 4 over n variables,

forming such monomials, is less than n4. Hence m < n4.

To prove a better bound, we capture fi in the span of fewer mono-

mials. When expanding the product, the terms with degree 4 are

(∑n

k=1 x2
k
) 2

. Those with degree 3 have the form xj(∑n

k=1 x2
k
) . Thus fi

is a linear combination of polynomials of the following forms:

(
n∑

k=1

x2
k)2

, xj(
n∑

k=1

x2
k)2

, xj xk , xj , 1 ,

where j , k ∈ [n]. The number of such polynomials is 1 + n+ n(n+ 1)/2 +

n+ 1, which simplifies to (n+ 1)(n+ 4)/2.

20.2.6. REMARK. The polynomial method. The proof of Theorem 20.2.5

illustrates the general outline of the polynomial method to show that a

set S has size at most m.

1) Define polynomials associated with the elements of S.

2) Show that the polynomials are linearly independent.

3) Show that the polynomials are spanned by a set of size m.

Step 3 shows that the polynomials lie in a space of dimension at most m.

Since they are linearly independent, there are at most m of them.

Occasionally one can prove a better bound by adding a step 2.5, which

is to throw in additional polynomials besides the ones associated with S

and show that the polynomials in the augmented family remain linearly

independent. Blokhuis [1981] did this to improve the bound in Theorem

20.2.5 from (n+ 1)(n+ 4)/2 to (n+ 1)(n+ 2)/2. In addition to the polyno-

mials f1 , . . . ,fm defined there, he added the constant polynomial 1 and

the linear polynomials x1 , . . . , xn of degree 1. The full set is spanned by

the same polynomials as before and is linearly independent, so the bound

on m is reduced by n+ 1 (see Exercise 7).
We will use this augmentation technique in Theorem 20.2.@.

Often we need an analogous criterion for linear independence that

holds more generally than the diagonal criterion.

20.2.7. PROPOSITION. (The Triangular Criterion) Let f1 , . . . ,fm

be functions in a linear space. If v(1) , . . . , v(m) are points such that

fi(v(i)) 6= 0 for 1 ≤ i ≤ m and fi(v(j)) = 0 for i > j , then f1 , . . . ,fm are

linearly independent.

Proof: Consider coefficients c1 , . . . , cm such that∑m

i=1 cifi is the identically-

zero function. Evaluating this function at v(1) yields c1f1(v(1)) = 0 and

hence c1 = 0. Proceding by induction on j , if we have already verified that

c1 = · · · = c j−1 = 0, then evaluating ∑m

i=1 cifi at v(j) yields cjfj(v(j)) = 0,

because the earlier terms have coefficient 0 and the later functions eval-

uate to 0. Hence cj = 0 for 1 ≤ j ≤ m.

FAMILIES WITH RESTRICTED INTERSECTIONS

Restricting the sizes of the intersections of sets in a family restricts

the size of the family. Perhaps the most famous such result is the Erdős–

Ko–Rado Theorem [1961]. A family of sets is an intersecting family

if every two members have a nonempty intersection. For n ≥ 2k , a con-

sequence of their theorem is that the maximum size of an intersecting

family of k-sets in [n] is (n−1
k−1
) (see Chapter 13). More generally, we could

specify the allowed sizes of intersections.

20.2.8. DEFINITION. For L ⊆ N0 , an L-intersecting family of sets is a

family F such that |A∩ B| ∈ L for all A , B ∈ F.

In this language, the Erdős–Ko–Rado Theorem for k-uniform fami-

lies uses L = {1 , . . . , k − 1}. If 0, so that L = {0 , . . . , k − 1}, then we can

include all k-sets, yielding a family of size ( n
|L|). If we do not require a k-

uniform family, then we can include all sets of size at most k , yielding a
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family of size∑|L|i=0
(n

i
). Frankl–Wilson [1981] proved that for all n and L,

no L-intersecting family has more than this many members.

To prove the Frankl–Wilson Theorem, we will use the Triangular

Criterion and another method for bounding the size of a set of linearly

independent polynomials. We modify them, without changing the values

responsible for making them linearly independent, into other polynomi-

als contained in a space of small dimension.

20.2.9. REMARK. Multilinear Reduction method. Given a polynomial f

in n variables, define the multilinear reduction of f to be the polyno-

mial f̂ in which each positive exponent (in the expression of f as a sum

of monomials) is reduced to 1.

Because 0r
= 0 and 1r

= 1 for r ∈ N, the values of f and f̂ agree

on {0 , 1}n. If f1 , . . . ,fm are linearly independent due to their values on{0 , 1}n, then f̂1 , . . . , f̂m are linearly independent for the same reason. In

general, better bounds are available on the number of linearly indepen-

dent multilinear polynomials.

20.2.10. THEOREM. (Frankl–Wilson [1981]) If F is an L-intersecting

family of subsets of [n], where |L| = s, then |F| ≤∑s

i=0 (ni).
Proof: (Babai [1988]) Let F = {A1 , . . . , Am}, indexed so that |A1 | ≤ · · · ≤
|Am|. Let L = {l1 , . . . , ls}. For each i, let vi be the incidence vector of

Ai. Define polynomials f1 , . . . ,fm by fi(x) =∏k: lk<|Ai |(x · vi − lk). By con-

struction, fi(vj) 6= 0 for j = i. Using the indexing of F by size, |Aj ∩ Ai| <
|Ai| for j < i, and hence fi(vj) = 0 for j < i. By the Triangular Criterion,

f1 , . . . ,fm are linearly independent.

Since v1 , . . . , vm ∈ {0 , 1}n, the computations hold also for the multi-

linear reductions f̂1 , . . . , f̂m, so these polynomials also are linearly inde-

pendent. We prove the desired bound by capturing them in a small space.

Because each fi is the product of s linear factors, the total degree of each

monomial in the expansion of fi is bounded by s. Hence the multilinear

reduction of fi is spanned by the monomials that are products of at most

s distinct variables. The number of such monomials is∑s

i=0
(n

i
).

Better bounds can be proved in special cases. For example, if the sets

have odd size and the elements of L are all even, then the Oddtown theo-

rem (Theorem 20.2.2) implies |F| ≤ n. This is consistent with the bound( n

|L|) if we view the intersection sizes as congruence classes modulo 2. The

class 0 contains all intersection sizes, but the sizes of the sets in the fam-

ily are forbidden from that class. Exercise 3 generalizes the Oddtown

theorem to other moduli for uniform families.

Meanwhile, here we present a modular version of the non-uniform

Theorem 20.2.10. The proof is analogous, and the bound is the same.

20.2.11. DEFINITION. Let p be a prime. For L ⊆ Zp, we say that t ∈
L (mod p) if t ≡ l (mod p) for some l ∈ L. A family F of subsets of[n] is p-modular L-intersecting if |A| /∈ L (mod p) for A ∈ F and

|A∩ B| ∈ L (mod p) for distinct A , B ∈ F.

20.2.12. THEOREM. (Deza–Frankl–Singhi [1983]) Let p be a prime. If

F is a p-modular L-intersecting family of subsets of [n], where |L| =
s, then |F| ≤∑s

i=0
(n

i
).

Proof: (Alon–Babai–Suzuki [1991]) Let F = {A1 , . . . , Am}, and let vi

be the incidence vector of Ai. Define polynomials f1 , . . . ,fm by fi(x) =∏l∈L
(x · vi − l). We view all computations over Fp and write “=” instead

of “≡”. Note that vj · vi = |Ai ∩ Aj |. Thus fi(vj) 6= 0 for i = j (since

|Ai| /∈ L (mod p)), while fi(vj) = 0 for i 6= j (since |Ai ∩ Aj | ∈ L (mod p)).
By the Diagonal Criterion, f1 , . . . ,fm are linearly independent.

The bound now follows in the same way as in Theorem 20.2.10. The

multilinear reductions f̂1 , . . . , f̂m are linearly independent by the same

criterion as f1 , . . . ,fm, and they lie in a space of dimension∑s

i=0 (ni).
Although it may seem that the bound ∑s

i=0 (ni) is much larger than

(n
s
), actually it is not when s is not too big.

20.2.13. LEMMA. If n ≥ 2s and s = n/r, then

s∑
i=0

(n
i
) ≤ (n

s
) (1 + s

n− 2s+ 1
) < (n

s
)(1 + 1

r − 2
) .

In particular, if s ≤ n/3, then∑s

i=0
(n

i
) < 2(n

s
).

Proof: By factoring (n
s
) from each term and then enlarging (and extend-

ing) the terms to obtain a geometric series,

s∑
i=0

(n
i
) = (n

s
)(1 + s

n− s+ 1
+

s(s− 1)
(n− s+ 1)(n− s+ 2) + · · ·)

≤ (n
s
)(1 + s

n− s+ 1
+

s2

(n− s+ 1)2 + · · ·)
= (n

s
) 1

1 − s
n−s+1

= (n

s
) n− s+ 1

n− 2s+ 1
= (n

s
)(1 + s

n− 2s+ 1
)

= (n

s
)(1 + n/r

n− 2n/r + 1
) < (n

s
)(1 + 1

r − 2
)
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These results yield a constructive superpolynomial lower bound for

the diagonal Ramsey number R(t , t). It is not as strong as Erdős’ non-

constructive exponential lower bound, but the graphs are explicitly de-

fined. The trivial construction in which one color occupies (t−1)Kt−1 and

the other is the complementary complete (t−1)-partite graph shows that

R(t , t) > (t − 1)2 . Nagy [1972] increased the explicit lower bound to (t3

3
)

(Exercise 4). Frankl [1977] constructed graphs showing that R(t , t)> tω(t)
using ∆-systems (sunflowers), where ω(t)→∞ as t→∞. Frankl–Wilson[1981] obtained similar behavior from p-modular L-intersecting families.

20.2.14. THEOREM. (Frankl–Wilson [1981]) Let p be a prime, and

choose n > 2p2. Let G be the graph with vertex set ( [n]
p2−1
) defined by

AB ∈ E(G) if and only if |A∩ B| 6≡ −1 (mod p). The graph G has no

homogeneous set with more than 2( n
p−1
) vertices. As a consequence,

R(t , t) > t(1−ε)ω(t) , where ω(t) = ln t
4 ln ln t

.

Proof: If A1 , . . . , Am is a clique in G , then it is a p-modular L-intersecting

family, where L = {0 , . . . , p− 2}, because |Ai| = p2 − 1 ≡ −1 (mod p), and

Ai Aj /∈ E(G) when |Ai ∩ Aj | ≡ −1 (mod p). With |L| = p − 1, Theorem

20.2.12 yields m ≤ ∑p−1

i=0
(n

i
) < 2( n

p−1
). If A1 , . . . , Am is an independent

set, then |Ai ∩ Aj | ∈ {p−1 , 2p−1 , . . . , p2−p−1}. Here p−1 intersection

sizes are allowed, so Theorem 20.2.10 yields m ≤∑p−1

i=0
(n

i
) < 2( n

p−1
).

Fixing t, let p be the largest prime such that 2( p3

p−1
) < t, and let n =

p3. We have shown that R(t , t) > ( n
p2−1
). The choice of p yields p ∼ ln t

2 ln ln t
,

and then ( p3

p2−1
) > t(1−ε)ω(t) , where ω(t) = ln t

4 ln ln t
. That is, we are comparing

roughly (p3

p
) for t with (p3

p2) for the lower bound on R(t , t). The logarithm

of the latter is roughly p/2 times the logarithm of the former, so roughly

R(t , t) > tp/2 (Exercise 10 requests further computational details).
Next we present an application of p-modular L-intersecting families

to coloring the unit-distance graph in n-dimensional space. The famous

Hadwiger–Nelsonproblem(Hadwiger [1944]) asks for the minimum num-

ber of colors needed to label the points of Rn so that no two points at dis-

tance 1 have the same color. For n = 2, it has long been known that the

answer is in {4 , 5 , 6 , 7} (Exercise 11). In general, there is an easy upper

bound of nn/2 (Exercise 12). Larman–Rogers [1972] presented a quadratic

lower bound and an upper bound of (2√2 + o(1))n and conjectured an ex-

ponential lower bound. Frankl–Wilson [1981] proved this; we obtain it

from a simple corollary of Theorem 20.2.12.

20.2.15. COROLLARY. Let p be a prime, and let F be a (2p−1)-uniform

family of subsets of [4p−1]. If no two members of F have exactly p−1

common elements, then |F| ≤ 2(4p−1
p−1
) < 1 .75484p−1 .

Proof: Let L = {0 , . . . , p− 2}. The family F is p-modular L-intersecting

since F is (2p− 1)-uniform with 2p− 1 /∈ L (mod p), and the remaining

possible intersection sizes {p , . . . , 2p−2} are congruent to elements of L.

Since |L| = p− 1, Theorem 20.2.12 and Lemma 20.2.13 yield the bound.

Note that 2(4p−1
p−1
) = 1

2
(4p

p
). Using Stirling ’s Formula (Theorem

16.@.@), (4p
p
) is given approximately by c(4/33/4)4p/

√
p for some constant

c, and hence it is bounded by 1 .75484p−1 (since 4/33/4
< 1 .7548).

20.2.16. THEOREM. (Frankl–Wilson [1981])For large n, the chromatic

number of the unit-distance graph in Rn is greater than 1 .1397n.

Proof: Note first that the graph defined using distance d is isomorphic

to the unit-distance graph. Hence it suffices to prove the claimed lower

bound for a subgraph of the distance-d graph. We use an appropriate d

and a vertex set that is a subset of the unit cube.

The squared distance between two points in {0 , 1}n is the number of

coordinates where they differ. Viewed as incidence vectors of subsets A

and B of n, the number of coordinates whether they differ is |A△B|. If

A and B have size k , then |A△B| = 2(k − |A∩ B|). Hence forbidding one

distance between the points is equivalent to forbidding one intersection

size for the sets. If k = 2p− 1, then forbidding intersection size p− 1 is

equivalent to forbidding squared distance 2p.

Let p be the largest prime such that 4p− 1 ≤ n; we use only 4p− 1 of

the coordinates. Let d =
√

2p. By Corollary 20.2.15, the maximum size

of an independent set in the subgraph of the distance-d graph induced by

the incidence vectors of the (2p − 1)-sets in [4p − 1] is at most 2(4p−1
p−1
).

Hence the chromatic number is at least (4p−1
2p−1
)/2(4p−1

p−1
). Now 33/4/2 >

1 .1397 completes the proof, since for m = n/4 there is a prime between m

and m−m7/12 when m is sufficiently large (Huxley [1973]).
The lower bound can be improved to about (1 .2)n by choosing p to op-

timize the ratio ( n
2p−1
)/( n

p−1
) (Exercise 9).

Frankl–Füredi [1981] conjectured that the bound in the Frankl–

Wilson Theorem can be improved when L = [s], limiting the size of an

L-intersecting family to ∑s

i=0
(n−1

s
) instead of ∑s

i=0
(n

s
). Ramanan [1997]

proved this conjecture. Snevily conjectured that the same bound holds

when L is any set of s positive numbers. He proved this for sufficiently

large n (Snevily [1994]) and when L is an interval (Snevily [1999]) before



468 Chapter 20: Algebraic Methods Section 20.2: Dimension and Polynomials 469

proving the full conjecture (Snevily [2003]). Snevily ’s Theorem easily

implies the Frankl–Wilson Theorem (Exercise 13).
The case s = 1 was proved by Majumdar [1953] and amounts to the

non-uniform Fisher inequality (Exercise 19.1.@), which states that if B is

a family of n blocks in [v] (not necessarily of uniform size), no block equals[v], and every two elements appear in λ common blocks, then n ≥ v. The

dual of this (by transposing the incidence matrix) is the statement that

the size of an L-intersecting family of subsets of [n] is at most n when

L = {λ}. Since n = (n−1
0
) + (n−1

1
), we have the case s = 1.

The details of Snevily ’s Theorem are a bit long, so we present only a

modular version that he proved earlier. The proof illustrates a way to im-

prove bounds from the polynomial method. We start with the same poly-

nomials in the same space as before and add more polynomials spanned

by the same set. If the full set of polynomials is still linearly indepen-

dent, then the new bound on F is the original bound minus the number

of added polynomials. In the present application, our space has dimen-

sion ∑s

i=0
(n

s
) and we add ∑s

i=1
(n−1

i−1
) polynomials, leaving dimension only

∑s

i=0 (n−1
s
) for those corresponding to F. This technique is also used in

Exercise 7 to improve the bound on two-distance sets.

In the case where the sizes of members of F do not lie in L, we obtain

the non-modular statement of Snevily ’s Theorem by taking p sufficiently

large. Extensions to k-wise intersections appear in Grolmusz–Sudakov[2002] and Cao–Hwang–West [2007]. The next lemma can be strength-

ened, but this statement suffices for our purposes.

20.2.17. LEMMA. Let C1 , . . . , Ct be subsets of [n], indexed in nonde-

creasing size order. If polynomials h1 , . . . , ht are defined on Rn by

hj(x) =∏r∈Cj
xj , then h1 , . . . , ht are linearly independent on {0 , 1}n.

Proof: Let wj be the incidence vector of Cj , so hj(wj) = 1. If i > j , then

the indexing of C1 , . . . , Ct guarantees an element r ∈ Ci−Cj . Now hi has

xr as a factor, but the value in coordinate r of wj is 0, so hi(wj) = 0. By

the Triangular Criterion, {h1 , . . . , ht} is linearly independent.

20.2.18. THEOREM. (Snevily [1994]) If F is a p-modular L-intersecting

family of subsets of [n], with s = |L|, then |F| ≤∑s

i=0 (n−1
i
).

Proof: Let F = A1 , . . . , Am, indexed so that A1 , . . . , Aq omit the element

1 and Aq+1 , . . . , Am contain it. Begin the proof as in Theorem 20.2.12,

letting fi(x) =∏l∈L
(x ·vi− l), where vi is the incidence vector of Ai. As be-

fore, the Diagonal Criterion makes f1 , . . . ,fm linearly independent. As

before, the multilinear reductions f̂1 , . . . , f̂m are also linearly indepen-

dent and are spanned by the∑s

i=0
(n

i
) multilinear monomials of degree at

most s.

Let C1 , . . . , Ct be the sets of size less than s in [n] lacking element

1, indexed so |C1| ≤ · · · ≤ |Ct|. Define hj and g j by hj(x) = ∏r∈Cj
xj and

g j(x) = (x1 − 1)hj(x). Note that g j has degree at most s (x1 appears with

degree 2 when j > r). The multilinear reduction of g j is spanned by the

same set of ∑s

i=0 (ni) monomials as fi. Since t = ∑s

i=1 (n−1
i−1
), it suffices to

show that {f1 , . . . ,fm} ∪ {g1 , . . . , gt} is linearly independent.

Let P = ∑m

i=1 αifi + ∑t

j=1 βjg j , with each αi and βj in Fp. Suppose

that P is identically 0. Let A′i = Ai ∪ {1}, and let yi be the incidence

vector of A′i , for 1 ≤ i ≤ m. Each yi has 1 in the first coordinate, so the

contribution of the second sum to P(yi) is always 0.

Note that A′j∩ Ai = Aj∩ Ai if i ≤ j . This holds because 1 ∈ Aj if j > r

and 1 /∈ Ai if i ≤ r. Thus fi(yj) = fi(vj) for i ≤ j . Since fi(vj) = 0 when

i 6= j , evaluating P at ym , . . . , y1 successively shows that αm , . . . , α1 = 0.

By Lemma 20.2.17, h1 , . . . , ht are linearly independent. Multiplying

all by x1 − 1 leaves g1 , . . . , gt independent. Since αm , . . . , α1 = 0, mak-

ing P identically 0 thus also requires β1 , . . . , βt = 0. Hence there is no

equation of linear dependence for {f1 , . . . ,fm}∪ {g1 , . . . , gt}.
The top two entries in ∑s

i=0 (n−1
i
) sum to (n

s
). When F is required to

be uniform, this bound suffices, even if 0 is allowed in L. This next re-

sult appeared first among those we present on L-intersecting families for

|L| > 1 (proved in 1969 but not published until 1975), but the use of lin-

ear algebra in the original proof was different from the approach we have

developed. Combining the ideas we have presented led to a shorter proof.

Like the Frankl–Wilson Theorem, this result can be motivated us-

ing the case L = {0 , . . . , s − 1}. If k = s, then the condition of being

L-intersecting places no restriction on the sets chosen for a k-uniform

family, so all (n
s
) sets of size k can be chosen. It is perhaps surprising that

the same bound is valid for L-intersecting k-uniform families when L is

any set of s nonnegative numbers.

20.2.19. THEOREM. (Ray-Chaudhuri–Wilson [1975]) If n ≥ 2s, and L is

a set of s nonnegative integers, then every L-intersecting k-uniform

family of subsets of [n] has size at most (n
s
).

Proof: (Alon–Babai–Suzuki [1991]) We may assume k /∈ L. Let F ={A1 , . . . , Am}; all are k-sets, with incidence vectors v1 , . . . , vm. Let

fi(x) =∏l∈L
(x ·vi− l). By the Diagonal Criterion, f1 , . . . ,fm are linearly

independent on {0 , 1}n. Each fi has degree s; the multilinear reduction

yields polynomials f̂1 , . . . , f̂m that are linearly independent on {0 , 1}n

and spanned by the∑s

i=0
(n

i
)multilinear monomialswith degree at most s.
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As in Theorem 20.2.18, we add polynomials to this set. Let C1 , . . . , Ct

be the sets of size less than s in [n], indexed in increasing order of size.

Define hj by hj = ∏r∈Cj
xr . By Lemma 20.2.17, h1 , . . . , ht are linearly

independent over {0 , 1}n. Define g j by g j(x) = (x · 1n − k)hj(x). As in The-

orem 20.2.18, we have multiplied independent polynomials by one linear

factor, and the resulting polynomials are independent.

Let P = ∑m

i=1 αifi +∑t

j=1 βjg j . Consider coefficients such that P is

identically 0. Since F is k-uniform, the contribution from the second sum

is 0 when evaluated at vi. Since fi(vj) = 0 when j 6= i, evaluating P at vi

thus yields αi = 0. With each αi being 0, linear independence of g1 , . . . , gt

implies also that each βj is 0.

We conclude that {f1 , . . . ,fm}∪{g1 , . . . , gt} is linearly independent,

where again we take the multilinear reduction of g j . The degree of g j is

at most s, so these vectors also lie in the span of the ∑s

i=0 (ni). Since t =

∑s−1

i=0
(n

i
), we conclude that m ≤ (n

s
).

As we have noted, the bound (n
s
) holds with equality when L ={0 , . . . , s − 1} and k = s. Is it still achievable or nearly achievable for

larger k? Because (n
s
) ∼ ns/s!, the construction below is not so much

smaller than the upper bound when s and t are fixed and n is large.

20.2.20. THEOREM. For n ≥ 2k2 ≥ 2s2 and L = {0 , . . . , s − 1}, some

k-uniform L-intersecting family F satisfies |F| > (n/2k)s .
Proof: Let p be the largest prime bounded by n/k , so n/2k < p ≤ n/k. Fix

a k-set A contained in Fp. Since kp ≤ n, we may choose X to be an n-set

containing A× Fp; we will ignore the elements of X outside A× Fp.

Our family F will consist of ps k-sets contained in A × Fp. Given a

polynomial f of degree less than s, let Af = {(a ,f(a)): a ∈ A}. There are

ps polynomials over Fp with degree less than s, so this defines ps sets of

size k. Distinct polynomials of degree d over Fp agree on at most d points

in Fp. Since k ≥ s, we conclude that the ps sets constructed are distinct,

and any two of them have fewer than s common elements.

COMBINATORIAL NULLSTELLENSATZ

The Combinatorial Nullstellensatz is a statement about zeros of mul-

tivariable polynomials over a field. Fairly easy to prove, it has found

wide-ranging applications in additive number theory, discrete geometry,

and various parts of graph theory. The theorem was articulated by Noga

Alon and presented at a conference in 1995, although the proceedings

with the resulting survey paper was not published until 1999. Neverthe-

less, Alon had already applied the theorem in at least five different papers

with eight different coauthors between 1984 and 1996, proving new re-

sults and giving short proofs of old results. Since the publication of the

theorem, many other researchers have also employed it.

We need a lemma that is a straightforward inductive generalization

to n variables of the familiar statement that a nonzero polynomial of de-

gree d in one variable takes the value 0 at most d times. This itself is

proved by induction on d, using the Euclidean algorithm to factor out

x − α when α is a root. The discussion is valid when the computations

are done in any field, and we simply compute with equalities rather than

using congruence notation for finite fields.

20.2.21. LEMMA. Let f be a polynomial in n variables x1 , . . . , xn, over a

field F. For each i, let the degree of f as a polynomial in xi be at most

di, and let Si be a set of di+1 distinct values in F. If f(x1 , . . . , xn) = 0

for (x1 , . . . , xn) ∈∏n

i=1 Si , then f is identically 0.

Proof: We take the result in one variable as the basis for induction on

n. For n > 1, we collect terms to write f as a polynomial in xn. That is,

f =∑dn

j=0 fj(x1 , . . . , xn−1)x j
n, where each fj is a polynomial having degree

at most di in each xi. For (x1 , . . . , xn−1) ∈∏n−1

i=1 Si , evaluating f0 , . . . ,fdn

yields a one-variable polynomial in xn of degree at most dn. Furthermore,

the hypothesis implies that this polynomial is 0 for xn ∈ Sn.

By the basis step (n = 1), the one-variable polynomial we obtain for a

fixed (x1 , . . . , xn−1) ∈∏n−1

i=1 Si is the zero polynomial. Thus each fi is 0 at

all values in∏n−1

i=1 Si. By the induction hypothesis, each fi is identically

zero. Thus the coefficients of f are all zero, and f is identically zero.

We would like to conclude that if the coefficient of a term ∏ xti

i is

nonzero in a polynomial f of degree∑ ti , and |Si| > ti for all i, then the

polynomial is nonzero at some point in ∏ Si. However, the lemma does

not say this, because other terms may have degree larger than ti in xi ,

for some i. Fortunately, it is not hard to overcome this technicality.

The degree of a polynomial is the maximum, over all monomials, of

the sum of the exponents on the variables. It is convenient to obtain the

coefficient of a monomial∏n

i=1 xti

i in a polynomial f(x1 , . . . , xn) using the

coefficient operator [∏n

i=1 xti

i ] , which for formal power series in one

variable was used extensively in Chapter 16.

20.2.22. THEOREM. (Combinatorial Nullstellensatz; Alon [1999])
If ∏n

i=1 xti

i is a monomial with nonzero coefficient in a polynomial f
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having degree∑n

i=1 ti over a fieldF, and S1 , . . . , Sn are sets with |Si| >
ti for 1 ≤ i ≤ n, then f(x) 6= 0 for some x ∈∏ Si.

Proof: It suffices to prove the statement when |Si| = ti+1 for each i. The

idea is to change f into another polynomial f̂ that agrees with f on∏ Si

but has degree at most ti as a polynomial in xi , for each i. Lemma 20.2.21

then implies that f̂(x) 6= 0 for some x ∈ ∏ Si. Since f̂ agrees with f on∏ Si , also f(x) 6= 0.

For each index i, define a polynomial gi by gi(x) =∏s∈Si
(xi − s); note

that gi depends only on xi. It has degree ti + 1 in xi and degree 0 in other

variables. Expanding the product yields gi(x) = xti+1
i − hi(x), where hi is

a polynomial with degree at most ti in xi and degree 0 in other variables.

By definition, gi(x)= 0 for x ∈∏Si , since xi ∈ Si in that case. There-

fore, xti+1
i = hi(x) for all x ∈ ∏Si. This allows us to replace each ap-

pearance of a variable having too large an exponent with a polynomial of

smaller degree in that variable. By making such a replacement as long

as the polynomial still has degree greater than ti in some xi , we obtain f̂

having degree at most ti in xi for each i.

We must also check that [∏ xti

i ] f̂(x) 6= 0. Since no exponent is too

large, we made no change to that term. Also we did not introduce any

terms that could cancel it; since f has degree ∑ ti , any monomial con-

taining a variable with too large an exponent has some other xj with ex-

ponent less than tj . Since the substitutions increase no exponents, no

substitution can introduce a contribution to [∏ xti

i ] .
One of the first applications was a short proof of the Cauchy–

Davenport Theorem of additive number theory. The theorem was orig-

inally proved by Cauchy in 1813 and Davenport in 1935. Let A and B

be subsets of Zn , with |A| = a and |B| = b. The question is how many

elements of Zn arise as x + y with x ∈ A and y ∈ B.

Setting A = {0 , . . . , a − 1} and B = {0 , . . . , b − 1} shows that the

sum can be as small as min{n , a+ b−1}. On the other hand, if a+ b > n,

then for any c ∈ Zn the sets A and {c − y: y ∈ B} must intersect, and

when an element x is in the intersection we have x ∈ A and y ∈ B such

that c = x + y. Hence the number of sums always equals n if a + b > n.

Finally, note that when n = 2k , taking the “even” classes for both A and

B yields only even classes as sums, so here the sum can be as small as n/2

even though a = b = n/2.

This suggests restricting our attention to prime moduli and proving

the next theorem.

20.2.23. THEOREM. (Cauchy–Davenport Theorem) If p is prime,

and A , B ⊆ Zp with |A| = a and |B| = b and a + b ≤ p, then the

smallest possible size of {x + y: x ∈ A , y ∈ B} is a+ b− 1.

Proof: By the observation above, it suffices to prove the lower bound.

Suppose that there are fewer than a+ b− 1 sums. Let C be a set of size

a+ b− 2 in Zp that contains all the sums. Let f(x , y) =∏c∈C
(x + y − c),

over Zp. We have a polynomial in two variables, and its degree is a+b−2.

We claim that [xa−1 yb−1]f(x , y) = (a+b−2
a−1
) 6≡ 0 (mod p). Contributions

to this coefficient use x or y in each factor when expanding f , choosing

x exactly a − 1 times and y exactly b − 1 times. The number of ways to

do that, each contributing +1 to the coefficient, is (a+b−2
a−1
). Finally, that

binomial coefficient is nonzero modulo p since a + b − 2 < p; there is no

factor of p in the numerator and no other way to introduce a factor of p.

Since |A| = a and |B| = b, the Combinatorial Nullstellensatz yields

x ∈ A and y ∈ B such that f(x , y) 6= 0. This is a contradiction, since f

was constructed to be 0 at all such pairs (x , y).
This short proof illustrates the method for applying the Combinato-

rial Nullstellensatz. Using the set of sums, we design f that is 0 at (x , y)
when x ∈ A and y ∈ B. If the set of sums is too small, then A×B is too big

for f to be identically 0 there when the appropriate coefficient is nonzero.

When A = B, the lower bound in Theorem 20.2.23 is min{2 |A|−1 , p}.
Erdős and Heilbronn [1964] conjectured that almost as much is forced

even without considering contributions of the form a+ a. Given the ease

of proving this from the Combinatorial Nullstellensatz, it is remarkable

that the problem was open for 30 years. The original proof used exterior

algebra and representation theory of the symmetric group.

20.2.24. THEOREM. (Erdős–Heilbronn Conjecture; Dias da Silva–

Hamidoune [1994]) If A ⊆ Zp, where p is prime, and C is the set of

sums of distinct elements of A, then |C| ≥ min{2 |A| − 3 , p}.
Proof: (Alon–Nathanson–Rusza [1996]) Since there are only p classes,

we may assume that 2a−3 < p, where a = |A|. As in the proof of Theorem

20.2.23, we design a polynomial f that is 0 at (x , y)when x+ y ∈ C. The

polynomial is the same as before, except that we include the factor (x− y)
to ensure that f is 0 when x = y, since 2x may not be in C. That is, let

f(x , y) = (x− y)∏c∈C
(x+ y− c). Note that deg(f) = m+1, where m = |C|.

We study the coefficient of xa−1 ym−a+2. As before, contributions to

the desired coefficient use x or y in each factor. The contributions choos-

ing x in the first factor are positive, and those choosing −y are negative.

Thus [ xa−1 ym−a+2]f(x , y) = ( m
a−2
)−( m

a−1
) = [1− a−1

m−a+2
]( m

a−2
). If m ≤ 2a−4,

then this coefficient is positive, and a > m−a+2. Now the Combinatorial
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Nullstellensatz guaratees(x , y) ∈ A2 such that f(x , y) 6= 0. These are dis-

tinct elements of A whose sum is not in C, which is a contradiction. We

conclude that m ≥ 2a− 3.

The theorem below extends Theorem 20.2.24 to restricted sums over

many variables. See Exercises 14–16 for the proof and applications.

20.2.25. THEOREM. (Alon–Nathanson–Rusza [1996])Let p be a prime,

and let h be a polynomial in k variables over Zp. Let A1 , . . . , Ak

be nonempty subsets of Zp, with ci = |Ai| − 1 for all i. Let m =

∑k

i=1 ci − deg(h). Let C = {∑k

i=1 ai: ai ∈ Ai and h(a) 6= 0}. If

[∏k

i=1 xci

i ](∑k

i=1 xi)mh(x) 6= 0, then |C| ≥ m+ 1 (so m < p).
Our next consequence can also be considered number-theoretic, but

it has a geometric application. It was conjectured by Artin [1934], proved

by Chevalley [1936], and extended by Warning [1936]. The proof depends

heavily on Fermat ’s Little Theorem (Corollary 0.@), which states that if

p is a prime, then ap−1 ≡ 1 (mod p) for every integer a not divisible by p.

20.2.26. THEOREM. (Chevalley–Warning Theorem)Let P1 , . . . , Pm

be polynomials over Fp in n variables. If ∑m

i=1 deg(Pi) < n and the

polynomials share a zero, then they share another zero.

Proof: Let (c1 , . . . , cn) be a common zero. Let

f(x) =
m∏

i=1

(1 − Pi(x)p−1)−
n∏

j=1

(1 − (xj − cj)p−1).
Note that f(c) = 1 − 1 = 0. If there is no other common zero, then for

x ∈ Fn
p − {c}, there exists i such that Pi(x) 6≡ 0 (mod p), and there exists

j such that xj 6= cj . By Fermat ’s Little Theorem, Pi(x)p−1 ≡ 1 ≡ (xj −
cj)p−1 (mod p). Hence f(x) = 0, for all x ∈ Fn

p .

The degree of the first term in f is bounded by (p− 1)∑m

i=1 deg(Pi),
which is less than (p− 1)n. The degree of the second term is (p− 1)n, and

indeed [∏ x
p−1
j
] = (−1)n+1 6≡ 0 (mod p). Since |Fp| > p− 1 and we choose

each xi from Fp, Theorem 20.2.22 guarantees x ∈ Fn
p such that f(x) 6= 0.

This contradiction proves that there must be another zero.

Chevalley proved this for m = 1 and Warning extended it; both guar-

anteed p solutions, which is stronger than proved here. We apply Theo-

rem 20.2.26 to determine the transversal number of the hypergraph H

of all hyperplanes in Fn
p. The vertex set is Fn

p , and for each hyperplane H

we include an edge consisting of all the points in H. These points are the

solutions to a · x = b, for some a ∈ Fn
p and b ∈ Fp. Every edge has pn−1 ver-

tices. The transversal number T(H) of a hypergraphH is the minimum

size of a vertex subset intersecting all the edges.

20.2.27. THEOREM. (Jamison [1977], Brouwer–Schrijver [1978]) The

transversal number of the hypergraph of all hyperplanes in Fn
p is ex-

actly n(p− 1)+ 1.

Proof: First we produce a transversal of this size. Let B be the set of

points in Fn
p having at most one nonzero coordinate; by construction B

has the specified size. To prove that B is a transversal, we use induction

on n. For n = 1, each point is a hyperplane, and indeed B = F1
p.

For n > 1, hyperplanes of the form xn = c are hit by the point in

B having c in the last coordinate. For other hyperplanes, consider the

fixed hyperplane H defined by H = {x ∈ Fn
p: xn = 0}. The hyperplanes

of the form xn = c include H and all hyperplanes disjoint from H. The

others intersect H in a hyperplane of Fn−1
p obtained by dropping the last

coordinate (0) from the points in the intersection. By the induction hy-

pothesis, these hyperplanes are hit by the points in B that have 0 in the

last coordinate.

For the lower bound, let B be an arbitrary transversal. By applying

a translation in each coordinate, we may assume that 0 ∈ B. Let A =

B−{0}. The set A intersects all hyperplanes not containing ). This means

that for all x ∈ Fn
p − {0}, the equation x · y = 1 has a solution y ∈ A.

Let f(x) = ∏a∈A
(x · a− 1). Since x · y = 1 has a solution in A when

x 6= 0, we have f(x) = 0 for x ∈ Fn
p − {0} and f(0) = 1. Now define a single

polynomial P in n(p− 1) variables consisting of p− 1 copies of x; that is

x(j) = x
(j)
1

, . . . , x
(j)
n . Let P = (∑p−1

j=1 f(x(j)
1

, . . . , x
(j)
n ))− (p− 1).

Since f takes only the values 0 and 1, the sum is p−1 only when each

summand is 1, so x(j) = 0 for each j . Viewed over all n(p− 1) variables, 0

is the only zero. The contrapositive of the Chevalley–Warning Theorem(for m = 1) now yields n(p− 1) ≤ deg P ≤ deg f ≤ |A| = |B| − 1.

SUBGRAPHS WITH SPECIAL PROPERTIES

For our initial applications of the Combinatorial Nullstellensatz to

graph theory, we present applications that we hope give further insight

into how one goes about modeling a problem with a polynomial that will

be permit application of the method.

Berge and Sauer conjectured that every 4-regular graph has a 3-

regular subgraph. Taśkinov [1982] proved the conjecture. The claim is
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false for multigraphs (consider a 3-vertex graph with edges of multiplic-

ity 2), but the conclusion becomes true when there is at least one “extra”

edge, as seen by setting p = 3 in the next theorem. For convenience, when

v is a vertex in a graph, we let Γ(v) denote the set of edges incident to v.

20.2.28. THEOREM. (Alon–Friedland–Kalai [1984]) If p is prime, then

every loopless multigraph G with average degree greater than 2p−2

and maximum degree at most 2p− 1 contains a p-regular subgraph.

Proof: Suppose that G has n vertices and m edges. We want to design a

function f such that when f(x) 6= 0, the point x selects for us a p-regular

subgraph. Hence we introduce a variable xe for each edge e, and we let

Se = {0 , 1}. To apply the Combinatorial Nullstellensatz, we will want a

multilinear monomial term with a nonzero coefficient. Define f by

f(x) = ∏
v∈V(G)

[1 − (∑
e∈Γ(v)

xe)p−1]− ∏
e∈E(G)

(1 − xe).
Each factor in the first term has degree p− 1, so the degree of the

first term is at most (p−1)n. This quantity is less than m, since the aver-

age degree exceeds 2p− 2. Hence the degree is determined by the second

term, which has degree m, with [∏e∈E(G) xe]f(x) = (−1)m+1 6= 0.

By the Combinatorial Nullstellensatz, f(x̂) 6= 0 for some x̂ ∈ {0 , 1}m.

Since f(0) = 1 − 1 = 0, this occurs with x̂ 6= 0. Since x̂ 6= 0, the second

term in f(x̂) has a factor that is 0. Hence the first term in f(x̂) must

be nonzero. By Fermat ’s Little Theorem, this requires that ∑e∈Γ(v) is a

multiple of p for every vertex v.

Therefore, the degree of each vertex in the subgraph H of G with

edge set {e ∈ E(G): x̂e = 1} is a multiple of p. Since ∆(G) ≤ 2p− 1, the

degree is always 0 or p. Since x̂ 6= 0, the degree is not always 0. Thus H

has a nontrivial component, and it is a p-regular subgraph of G.

Theorem 20.2.28 leads to a bound on the number of edges needed in

an n-vertex graph to ensure existence of a k-regular subgraph. Step 1

of the proof employs elementary observations in graph theory that we

summarize briefly. The bound is not too far from optimal, as Pyber–

Rödl–Szemerédi [1995] proved using probabilistic arguments that there

are graphs with at least Ω(n log log n) that have no 3-regular subgraph.(They also showed that O(n log ∆(G)) edges force a 3-regular subgraph.)
20.2.29. THEOREM. (Pyber [1985]) If an n-vertex graph G has at least

32k2n ln n edges, then G has a k-regular subgraph.

Proof: Let d be the average vertex degree in G. Say that an X , Y-bigraph

is r-halfregular if |X | ≥ |Y | and every vertex of X has degree r.

Step 1. Every graph with average degree d contains an r-halfregular

X , Y -bigraph with r ≥ d/4. A bipartite subgraph with the most edges

captures at least half the degree at each vertex, and the degree-sum for-

mula then implies that it has at least half the edges and hence average

degree at least d/2. Then, deleting a vertex v from a graph with aver-

age degree a increases the average degree if and only if v has degree less

than a/2, so deleting vertices of minimum degree must eventually pro-

duce a subgraph with minimum degree at least a/2. Now we have a bi-

partite subgraph (an X , Y -bigraph with |X | ≥ |Y |)with minimum degree

r, where r ≥ d/4. Obtain an r-halfregular X , Y-bigraph by deleting edges

to reduce the degrees of vertices in X to r. Vertices in Y may wind up

with smaller degree, but the average degree in Y will be at least r.

Step 2. Every r-halfregular X , Y-bigraph H′ contains an r-halfregular

S, T-bigraph G′ that has a perfect matching F′. Choose S to be a minimal

nonempty subset of X subject to |N(S)| ≤ |S|. Such a set exists, since

|X | ≥ |Y |. If strict inequality holds, then deleting one element of S yields

a smaller such set. Hence equality holds. By the minimality of S, always

|N(S′)| > |S′| for S′ ⊂ S. Hence Hall’s Condition holds for the subgraph

G′ induced by S∪N(S), and G has a 1-factor. Since G′ contains all edges

incident to S, G′ is r-halfregular.

Step 3. An r-halfregular X , Y -bigraph H0 contains edge-disjoint 1-

regular subgraphs F0 , . . . , Fr−1 with V(F0) ⊇ V(F1) ⊇ · · · ⊇ V(Fr−1) 6=
∅. Step 2 provides an r-halfregular subgraph G0 of H0 with 1-factor

F0. Having constructed Hi−1 , Gi−1 , Fi−1 with Hi−1 being (r − i + 1)-
halfregular, let Hi = Gi−1 − E(Fi−1). Since Fi−1 is a 1-factor in Gi−1 ,

the graph Hi is (r− i)-halfregular, and Step 2 applies to find Gi and Fi as

desired.

Step 4. Let p be a prime with 2k > p ≥ k. If r ≥ d/4 > 4p2 ln n, then

some 2p−1 consecutive members of F0 , . . . , Fr−1 together form a graph with

average degree at least 2p− 2. Let nj = |V(Fj)|, and let F̂j = ⋃ j+2p−2
i= j Fi.

Since the number of edges in Fi is half its number of vertices, each of the

matchings in F̂j contributes at least 1
2

nj+2p−2 edges. Being 2
RRRRRE(F̂j)RRRRR/nj ,

the average degree is at least 2(2p− 1)1
2

nj+2p−2

nj
.

If
nj+2p−2

nj
>

2p−2
2p−1

for some j , then the claim holds. Otherwise, ⌊ r−1
2p−2
⌋

successive jumps of 2p− 2 steps yield

2 ≤ nr−1 < n0 (2p− 2

2p− 1
)

r−1
2p−2

≤ n(2p− 2

2p− 1
)

r−1
2p−2

.

Since (2p− 2)/(2p−1) = (1− 1
2p−1
) < e−1/(2p−1), the upper bound simplifies

to a negative power of n when r > 4p2 ln n, which contradicts that 2 is a

lower bound.
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Step 5. If G has at least 32k2n ln n edges, then G has a k-regular sub-

graph. With this many edges, the average degree is at least 64k2 ln n,

and hence G has average degree at least 16p2 ln n. By Step 1, G has an

r-halfregular subgraph with r ≥ 4p2 ln n. By Step 4, G has a subgraph

with average degree greater than 2p − 2 and maximum degree at most

2p−1. By Theorem 20.2.28, G has a p-regular subgraph. Since p≥ k and

we have arranged that this subgraph is bipartite, we can delete 1-factors

from it to obtain a k-regular subgraph.

Instead of specifying the exact degree at each nonisolated vertex, we

may be more flexible. Suppose that for each v ∈ V(G) a bad set B(v) ⊆{1 , . . . , dG(v)} is specified. We seek a subgraph H such that dH(v) /∈ B(v)
for all v. Shirazi–Verstraëte [2008] gave an easy proof from the Combi-

natorial Nullstellensatz that there is a nontrivial such subgraph H when∑v∈V(G) B(v) < |E(G)| (Exercise 23), and this is sharp.

They also proved a conjecture of Addario-Berry–Dalal–Reed–Thomason[2005] that allows 0 to be in the forbidden sets. This was stated originally

in terms of “allowed” degrees, but it is a bit cleaner for bad degrees.

It is helpful to think in advance about the design of the polynomial

f . We want the multivariate point x with f(x) 6= 0 to select the desired

subgraph H. Hence we make a variable for each edge, and we allow it

the values 0 and 1 to take model whether the edge is used in H. For each

vertex v, we design a factor that is 0 when the constraint at v is violated.

20.2.30. THEOREM. (Shirazi–Verstraëte [2008]) For each vertex v in a

graph G , specify a bad set B(v) ⊆ {0 , . . . , dG(v)}. If |B(v)| ≤ ⌊d(v)/2⌋
for all v ∈ V(G), then G has a subgraph H with dH(v) /∈ B(v) for all v.

Proof: Let Γ(v) denote the set of edges in G incident to vertex v. Intro-

duce a variable xe for each edge e in G , and consider x ∈ {0 , 1}m, where

m = |E(G)|. Define a real-valued polynomial f by

f(x) = ∏
v∈V(G)

∏
c∈B(v)

(∑
e∈Γ(v)

xe − c) .

Since∑e∈Γ(v) xe is the degree at v in a candidate subgraph, the factor for

v is 0 if and only if the degree at v is forbidden. Hence we seek x ∈ {0 , 1}m

such that f(x) 6= 0.

Since f is a product of linear factors, deg(f) is bounded by∑v∈V(G) |B(v)|.
By the Combinatorial Nullstellensatz, it suffices to find a monomial with

this degree having nonzero coefficient, whose variables all have exponent

at most one. Monomials in the product arise by choosing, for each forbid-

den degree at each vertex, an edge incident to that vertex. We must not

choose a given edge from both endpoints.

To avoid repeated selection, we orient G and pick for the monomial

at vertex v only variables xe such that v is the tail of e in the orientation.

If the orientation has at least ⌊d(v)/2⌋ edges leaving each vertex v, then

there are enough such edges to choose distinct ones for the elements of

B(v), since |B(v)| ≤ ⌊d(v)/2⌋ . To form an orientation D such that d+D(v) ≥⌊dG(v)/2⌋ , simply add a vertex w adjacent to all vertices of odd degree in

G and orient by following an Eulerian circuit in each component.

We thus obtain a linear monomial. Every contribution to the coeffi-

cient of a monomial with degree∑v∈V(G) |B(v)| is positive, since obtaining

that degree requires selecting some xe (and not c) from each factor.

Finally, when x is the point with f(x) 6= 0 guaranteed by the Combi-

natorial Nullstellensatz, each factor is nonzero, so the number of edges

selected at v (via xe = 1) does not lie in the bad set B(v).
Theorem 20.2.30 is sharp, as the conclusion may fail as soon as one

bad set is a bit too large. Let G = K2r,2r , with partite sets X and Y . If

B(x) = {0 , . . . , r − 1} for x ∈ X and B(y) = {r + 1 , . . . , 2r} for y ∈ Y ,

then each B(v) has size d(v)/2, and a subgraph is good if and only if it is r-

regular. As soon as the value r is added to one bad set, there is no longer

a good subgraph.

Our next application comes from graph labeling and takes more

work. The Combinatorial Nullstellensatz is a natural tool for graph la-

beling, because with variables for vertices the set Si for variable xi can

list the labels allowed at vertex vi.

20.2.31. REMARK. Graph Labelings. Ringel [1964] conjectured that

K2m+1 decomposes into copies of any tree T with m edges. Attempts to

prove this conjecture (or special cases) have tried to prove the stronger

statement that there is a cyclically invariant decomposition, where the

vertices are viewed as Z2m+1 and one copy of T is translated 2m+ 1 times(note that K2m+1 has (2m+ 1)m edges).
Rosa [1967] introduced several types of injective vertex labelings,

called α-, β-, [-, and ρ-“valuations”. The conditions for a ρ-valuation

are equivalent to cyclically invariant decompositionof K2m+1 ; the vertices

are assigned congruence classes modulo 2m+1 so that the differences be-

tween adjacent labels are distinct elements of [m]. The conjecture that

every tree with m edges has a ρ-valuation (and hence cyclically decom-

poses K2m+1) is attributed to Kotzig [1973].
A β-valuation of a graph with m edges is an injective labeling of the

vertices with integers in {0 , . . . , m} so that the differences of adjacent la-

bels comprise [m]. Following Golomb [1972], a β-valuation is now known
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as a graceful labeling. A graceful labeling is a ρ-valuation in which the

vertices are confined to m+ 1 consecutive congruence classes, so it yields

a special type of cyclic decomposition. (The 5-cycle has a ρ-valuation but

no graceful labeling.) The Graceful Tree Conjecture, also attributed

to Kotzig, asserts that every tree has a graceful labeling.

An α-valuation is a special type of β-valuation with a value α such

that the labels on each edge are on opposite sides of α; for bipartite

graphs, this makes all the labels in one part bigger than all the labels

in the other. The tree obtained by subdividing each edge of K1 ,3 has no

α-valuation. The “dynamic survey” by Gallian [2008] collects hundreds

of results on these and other graph labelings.

Although most of the attention has been given to the Graceful Tree

Conjecture, the conjecture that every tree has a ρ-valuation is presum-

ably easier and still implies Ringel’s decomposition conjecture. Kézdy[2006] used the Combinatorial Nullstellensatz to guarantee ρ-valuations

for a special family of trees under the additional condition that the num-

ber 2m+ 1 of congruence classes is prime.

20.2.32. DEFINITION. A tree with vertex set {v0 , . . . , vm} is stunted

if it can be grown from the root vertex v0 by successively introducing

vj for 1 ≤ j ≤ m so that vj is made adjacent to some vi with i < j/2.

In a stunted tree, the first two edges are incident to v0 , the third

may be incident to v0 or v1 , etc. The diameter of a stunted tree with m

edges is at most 2 lg m, whereas most trees have diameter around
√

m, but

the number of leaves, the diameter, and the distance of leaves from the

longest path may all be unbounded. In these senses the family is richer

than others that are known to have ρ-valuations.

Given the canonical order in which the tree is grown, we index the

edges as e1 , . . . , em so that ej joins vj to an earlier vertex. With ρ: V(T)→
Z2m+1 , we write the induced edge difference canonically as ρ(vj) − ρ(vi),
where i < j . The condition for ρ-valuation is then that these labels associ-

ated with edges are distinct and that none is the negative of another. Our

polynomial f will incorporate a factor that models these requirements.

20.2.33. THEOREM. (Kézdy [2006]) If T is a stunted tree with m edges,

and 2m+ 1 is prime, then T has a ρ-valuation.

Proof: Let p = 2m+ 1. Let P(j) be the set of indices of edges along the

unique v0 , vj-path in T ; note that P(0) = ∅.

We associate variables with edges rather than vertices because trans-

lation by a constant does not change whether a labeling is a ρ-valuation,

and thus there are only m choices to make. Associating variable xi with

ei, let g j(x) =∑i∈P(j) xi. With P(0) = ∅, actually g0(x) = 0. Thus g j(x) can

be viewed as ρ(vj), so that g j(x)− gi(x)= ρ(vj)− ρ(vi). Define f by

f(x) = ∏
1≤i< j≤m

(x2
j − x2

i) ∏
0≤i< j≤m

(g j(x)− gi(x)).
We have f(x) 6= 0 if and only if both factors are nonzero. With ρ(vj) =

g j(x) the second factor is nonzero if and only if the labeling is injective.

Since by construction the values xj are then the edge labels, the first fac-

tor is nonzero if and only if the edge labels are distinct and no two sum to

0. Hencef(x) is nonzero for some x ∈ Zm
p if and only if T has a ρ-valuation.

The set from which we choose each xj has size 2m+ 1, so the Combi-

natorial Nullstellensatz could apply to polynomials of degree up to 2m2.

The degree of f is 2(m
2
)+(m+1

2
), so there is room to add helpful factors. Let

F(x) = f(x)∏m

i=1 xi
i. The extra factor adds degree (m+1

2
), making the total

degree 2m2. If F(x) 6= 0, then f(x) 6= 0, so it suffices to show that F(x) 6= 0

for some x ∈ Zm
p . By the Combinatorial Nullstellensatz, it suffices to show

that [∏m

i=1 x2m
i ]F(x) is nonzero.

By Vandermonde’s Identity,

∏
1≤i< j≤m

(x2
j − x2

i) = ∑
]∈Sm

sign(])
m∏

k=1

x
2(m−k)
](k) .

Let Q =∏0≤i< j≤m
(g j(x)− gi(x)) and R =∏m

i=1 xi
i. To contribute to the co-

efficient of∏m

i=1 x2m
i , the term for ] in the Vandermonde expansion must

be multiplied by a term in QR with the factors∏m

k=1 x2k
](k). It thus suffices

to show that the only nonzero term with exponents 2k for 1 ≤ k ≤ m in

the expansion of QR is∏m

k=1 x2k
k

.

Let Qi , j = g j(x) − gi(x). The factor Qi , j in Q is linear and equals∑k∈P(j) xk −∑k∈P(i) xk . To each term in the expansion of Q it contributes

the factor ±xk for some edge ek on the vi , vj-path in T . The total degree

for each term in Q equals∑m

i=1 i.

Let M =∏m

k=1 x[(k)x2k . We claim that if M occurs in the expansion of

QR, then M arises by selecting xk from each linear factor Qi ,k in Q, and

hence [(k) = k for each k. Hence the desired monomial has coefficient ±1.

We prove the claim by induction on k. The claim is vacuous for k = 0.

For k ≥ 1, note that x[(k) has exponent 2k in M. For j > 2k , the exponent

j on xj in R is already too big. For j < k , the induction hypothesis yields

[(j) = j . Thus k ≤ [(k)≤ 2k.

Let j = [(k), and let Ti denote the subtree induced by {v0 , . . . , vi}.
Since k ≤ j ≤ 2k and T is stunted, the graph obtained by appending

ej to Tk−1 is also a tree (this is our only use of the hypothesis that T is
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stunted). For 0 ≤ i ≤ k − 1, the term Qi , j contributes the factor xj to M ,

since by the induction hypothesis the terms for paths in Ti have selected

the other variables as many times as they can be chosen. Thus xj appears

with exponent at least k+ j in M. We conclude that [(k)= k , completing

the proof.

It was not necessary to add the factor∏m

i=1 xi
i , and avoiding it would

yield a ρ-valuation with more restricted choices for the labels, but using

it simplified the argument.

THE ALON–TARSI THEOREM

In the extension of graph coloring known as list coloring, we still pick

a single color for each vertex, but the set of colors available at each vertex

may be restricted. When the colors represent resources, it may happen

that some colors cannot be used at some vertices.

For example, when scheduling legislative committees during the

week, two committees with a common member cannot meet at the same

time. We form a graph with a vertex for each committee and an edge for

each intersecting pair and seek a proper coloring. However, not all time

slots are available for all committees, since the members of a committee

may have prior commitments at some times. Each committee has a list of

time slots when it can meet. How big do the lists need to be to guarantee

finding time slots for all the committees without conflicts?

20.2.34. DEFINITION. A list assignment for a graph is a function L

that assigns each vertex a list of available colors. The graph is L-

colorable if it has a proper coloring f such that f(v) ∈ L(v) for all

v. Such a coloring is an L-coloring.

A graph G is k-choosable or list k-colorable if it is L-colorable

whenever all lists have size at least k. The list chromatic number,

choice number, or choosability χl(G) is min{k: G is k-choosable}.
The “lists” in list coloring are actually sets, without order. The term

“list” is used by tradition and because “set coloring” refers to choosing

sets of colors for the vertices. List coloring was introduced in Vizing[1976] and Erdős–Rubin–Taylor [1979]. Common notations for choice

number include χl and ch. Edge-coloring also has a natural list version,

with the edge-choosability ch′(G) being equal to ch(L(G)).
The lists can be identical, so χl(G) ≥ χ(G). It is not possible to bound

χl(G) in terms of χ(G); even for bipartite graphs it can be arbitrarily

large (Exercise 31). On the other hand, many well-known upper bounds

for χ(G) hold also for ch(G). It is easy to show that, ch(G)≤ ∆(G)+1, and

more generally every k-degenerate graph is (k + 1)-choosable (‘Xdegen ’).
One of the themes in 21st-century coloring theory is to strengthen upper

bounds on χ(G) by showing that they are also upper bounds on ch(G) (see

Exercises 29–).
For example, Brooks’ Theorem extends to list coloring: When G is

a connected graph, ch(G) ≤ ∆(G)+ 1 unless G is a complete graph or an

odd cycle (Erdős–Rubin–Taylor [1979]). Galvin [1995] similarly strength-

ened the edge-coloring result for bipartite graphs: ch′(G) = χ′(G) when

G is bipartite. For planar graphs, one must give up a little: Thomassen[1994] proved the famous result that planar graphs are 5-choosable, and

it was shown first by Voigt [1993] that this is sharp.

These and related results and extensions are studied at length in Sec-

tion 3.4 of Volume I. Here our focus is to explore the natural use of the

Combinatorial Nullstellensatz in problems involving list assignments.

Alon and Tarsi used a polynomial associated with a graph to obtain

upper bounds on χl(G). We first state the result, which can be applied

without knowing the algebraic background.

20.2.35. DEFINITION. A digraph D is a circulation if d+D(v) = d−D(v)
for all v ∈ V(D). The parity of a circulation is the parity of the num-

ber of edges in it. Let diff(D) denote the absolute difference between

the number of even circulations and the number of odd circulations

contained in D (as spanning subgraphs).
In this context, what we call circulations have also been called “Eu-

lerian digraphs” (see Alon [1993]). The term “circulation” reflects the

lack of restriction on the number of components, and it generalizes for

weighted graphs in the setting of network flows (see Chapter 7).
20.2.36. THEOREM. (Alon–Tarsi [1992]) Let f(v) = 1 + d+D(v) for each

vertex v in a digraph D. If diff(D) 6= 0, then D is f-choosable.

20.2.37. Example. Let G = Cn. Let D be a cyclic orientation of G. Here

d+D(v) = 1 for all v, and the only circulation contained in D are the trivial

subgraph (no edges) and D itself. If n is even, then diff(D) = 2, and G is

2-choosable. If n is odd, then diff(D) = 0, and D gives us no information.

Now reverse one edge to form D′ . The only circulation is the edgeless

subgraph, and diff(D′) = 1. Since D′ has a vertex with outdegree 2, we

find that the odd cycle is 3-choosable. The theorem provides only upper

bounds; we do not learn that the odd cycle is not 2-choosable.
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An acyclic digraph contains only one circulation, with no edges. Thus

Theorem 20.2.36 implies that G is k-choosable if G has an acyclic orien-

tation in which every vertex has outdegree less than k. This again proves

the trivial statement that k-degenerate graphs are (k + 1)-choosable.

•

•

••

•

• •
•

•

••

•

•

Before proving Theorem 20.2.36, we motivate it by describing several

applications. A relatively easy application (Alon–Tarsi [1992]) is that ev-

ery planar bipartite graph is 3-choosable (Exercise 88).
A most impressive application is the Cycle-plus-triangles Theo-

rem. Consider a 4-regular graph formed from C3m by adding m pair-

wise disjoint triangles. Du–Hsu–Hwang–Erdős [1987] conjectured that

every such graph is 3-colorable. Fleishner–Stiebitz [1992] proved this

by using Theorem 20.2.36 to prove the stronger result that every such

graph is 3-choosable. Later, Sachs [1993] gave a combinatorial proof of

3-colorability.

The analysis of circulations in the Cycle-plus-triangles Theorem is

lengthy. Instead we present an easier application to illustrate the Alon–

Tarsi Theorem. Like the Cycle-plus-triangles Theorem, it proves 3-

choosability for a 4-regular graph.

Recall that C2
n is the graph defined on n vertices around a circle by

making each vertex adjacent to the four nearest vertices; it is 4-regular.

If we can orient it with two edges in and two out at each vertex such

that the numbers of circulations of even and odd size differ, then it is

3-choosable. The motivation was in the context of “total coloring”.

20.2.38. Example. Total coloring is coloring the vertices and the edges

so that no adjacent or incident objects have the same color (see Exercises

52–53). The total chromatic number is the minimum number of col-

ors needed; it is the chromatic number of the total graph, obtained

from a graph G by subdividing every edge and then taking the square

of the graph (adding edges joining vertices at distance 2 in the subdi-

vision graph). For a cycle, subdividing just doubles the length, so total

coloring of a cycle is proper coloring of the square of a cycle twice as long.

Note that C2
n is not 3-colorable when n is not divisible by 3, so 3 | n is

certainly a necessary condition for 3-choosability.

•
•

•
••

•

•
•

20.2.39. THEOREM. (Juvan–Mohar–Škrekovski [1998]) The graph C2
n

is 3-choosable if and only if n is divisible by 3. Consequently, Cm is

3-total-choosable when m is divisible by 3.

Proof: We observed that 3 | n is necessary. For the converse, we seek a

suitable orientation of C2
n with maximum outdegree 2. Form D by ori-

enting every edge in the clockwise direction as shown above.

Among the circulations in D, let S0 , S1 , S2 be the sets of circulations

in which all vertices have outdegree at most 1, all equal 1, or all at least

1, respectively. Obviously, S0 ∩ S2 = S1 .

Less obviously, S0 ∪ S2 is the set of all circulations. Let D′ be a cir-

culation in D. If d+D′(v) = 0, then at most one edge of D′ “crosses the gap”

from v to the next vertex along the circle. Whenever D′ has at most one

edge crossing such a gap, also D′ has at most one edge crossing the next

gap. Hence we cannot encounter a vertex with outdegree 2 in D′.
To prove diff(D) 6= 0, we prove that the total number of circulations

is congruent to 2 modulo 4 and that the numbers of even circulations and

odd circulations are both even. The latter statement is easy. For a circu-

lation H , the remaining edges in D also form a circulation H′. Although

H 6= H′ , the numbers of edges in H and H′ have the same parity, since

D has 2n edges. Hence each parity class of circulations has even size.

Now consider all circulations. In S1 , there are exactly two: the “out-

side” edges of length 1 and the “inside” edges of length 2; the latter may

be one cycle or two depending on the parity of n. Furthermore, comple-

mentation of edge sets matches S0 − S1 with S2 − S1 ; they have the same

size. Hence it suffices to show that |S0 − S1 | is even.

We claim that |S0 − S1 | is the number of cycles that wrap once around

the circle, with steps whose lengths total n. One cycle (n unit steps) is an

element of S1 , while one element of S0−S1 (the circulation with no edges)
is not counted among the cycles. When n is odd, the n steps of length 2

form a cycle, but it is neither in S0 − S1 nor in the set of cycles we count.

For a fixed vertex v, a cycle that omits v corresponds to a 1 , 2-list with

sum n− 2, while a cycle that vists v corresponds to a 1 , 2-list with sum n.

The adjusted Fibonacci number F̂i is the number of 1 , 2-lists with sum i.

We obtain |S0 − S1 | = F̂n−2 + F̂n = F̂n−1 + 2F̂n−2. Note that F̂0 = F̂1 = 1,
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and hence F̂2 is even. The parity pattern then repeats, with F̂r even if

and only if r ≡ 2 (mod 3). Thus |S0 − S1 | is even if and only if 3 | n.

Juvan–Mohan-Škrekovski [1998] stated the result only for 6 | n,

since that is when it corresponds to total coloring of cycles. The key idea

is used also in the proof of the Cycle-plus-triangles Theorem and in many

applications of the Alon–Tarsi Theorem to 4-regular graphs: show that

in the specified orientation the total number of circulations is an odd mul-

tiple of 2 and the number with even size is even.

Theorem 20.2.36 has also been applied to edge-choosability of pla-

nar graphs. Jaeger and Tarsi independently observed (see Alon [1993])
that every 2-connected 3-regular planar graph is 3-edge-choosable (us-

ing also the Four Color Theorem). Ellingham and Goddyn [1996] ex-

tended this, proving that every k-regular k-edge-colorable planar graph

is k-edge-choosable. Thus the List Coloring Conjecture holds for these

graphs.

Now we develop the proof of Theorem 20.2.36. We use an algebraic

interpretation of L-coloring when the colors are real numbers. Associate

with each vertex vi a variable xi. We define a polynomial that is nonzero

just when the numbers assigned to the vertices form a proper coloring.

20.2.40. DEFINITION. Given a graph G with vertex set v1 , . . . , vn, let

E′(G)= {(i , j): i < j and vivj ∈ E(G)}. The graph polynomial pG of

G is defined by pG(x1 , . . . , xn) =∏(i , j)∈E′(G)(xi − xj).
Early applications of the graph polynomial include Petersen [1891],

Scheim [1974], Li–Li [1981]. Indeed, Petersen introduced graphs to

study such polynomials (see Toft [1992]). Throughout this discussion,

we assume that G is a graph with a fixed vertex indexing v1 , . . . , vn.

As remarked, pG(x1 , . . . , xn) is 0 if and only if assigning xi to vi for

all i produces a monochromatic edge. The relation of pG to orientations

is seen by expanding the product. For a transitive tournament, parity of

orientations reduces to parity of permutations.

20.2.41. DEFINITION. An edge vivj in an orientation of G (with ver-

tices v1 , . . . , vn) is decreasing if i > j . The parity of an orientation

of G is the parity of the number of decreasing edges.

20.2.42. LEMMA. Let d denote a vector d1 , . . . , dn of nonnegative in-

tegers. In the graph polynomial pG , the coefficient of the monomial∏ xdi

i is the number of even orientations of G with outdegrees d mi-

nus the number of odd orientations of G with outdegrees d.

Proof: The polynomial is homogeneous of degree |E(G)|, since each factor

is homogeneous of degree 1. Each contribution to the expansion is formed

by selecting one endpoint of each edge. This corresponds to an orientation

by letting the selected vertex be the source of the edge. The resulting con-

tribution to the expansion is (−1)t∏ xdi

i , where di is the outdegree of vi

in the corresponding orientation and t is the number of decreasing edges.

For a given list d of outdegrees, the even orientations count +1, and the

odd orientations count −1.

In order to relate this coefficient to diff(D) in the statement of The-

orem 20.2.36, we establish a bijection from the set of orientations with

the same outdegrees as D to the set of circulations contained in D.

20.2.43. LEMMA. For an orientation D of G with di = d+D(vi) for each i,

the absolute value of the coefficient of∏ xdi

i in pG is diff(D).
Proof: Fixing the orientation D, let D′ be any orientation of G having

outdegree at each vertex the same as in D. Let D ⊕ D′ be the spanning

subdigraph of D whose edges are those reversed in D′. Since d+D(v) =
d+D′(v) for all v, the subdigraph D ⊕ D′ is a circulation contained in D.

Also, each edge placed in D ⊕ D′ changes the parity of the number of de-

creasing edges, so D ⊕ D′ has an even number of edges if and only if the

numbers of decreasing edges in D and D′ have the same parity.

Switching the orientation on the edges in a circulation does not

change the outdegree at any vertex, so this inverts the map sending D′

to D ⊕ D′. We thus have a bijection from the set of orientations with the

same outdegrees as D to the set of circulations contained in D. We have

also observed that the parities of an orientation and the corresponding

circulation are the same. Hence the coefficient has the value claimed.

By Lemma 20.2.43, diff(D) depends only on the outdegrees in D. The

Alon–Tarsi Theorem now follows immediately.

Proof of Theorem 20.2.36 (Alon–Tarsi Theorem). Given a graph G

with vertices v1 , . . . , vn and an orientation D of G with diff(D) 6= 0, let

di = d+D(vi). By Lemma 20.2.43,
RRRRRR[∏ xdi

i ] pG
RRRRRR = diff(D). Since diff(D) 6=

0, Theorem 20.2.22 implies that pG is nonzero for some x ∈ ∏Si when

|Si| ≥ di + 1 for each i. With f(v) = 1 + d+D(v) for each v, we conclude that

D (and the underlying graph G) is f-choosable.
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Ramamurthi–West [2005] generalized the Alon–Tarsi Theorem to k-

uniform hypergraphs, where k is prime. The notion of orientation is se-

lecting a source from each edge. Like the graph polynomial, the hyper-

graph polynomial has a factor for each edge; it is ∑k

i=0 θ
ixji

, where θ is

a kth root of unity and the vertices vj1
, . . . , vjk are in increasing order of

indices. The notion of circulation is more complicated, but the proof is a

straightforward generalization of the Alon–Tarsi proof.

LIST WEIGHTING

The Combinatorial Nullstellensatz is well-suited for problems involv-

ing lists, where the sets Si of values for the variables can be interpreted

as lists from which choices are to be made. This allows us to generalize

various labeling problems to a list context.

20.2.44. DEFINITION. A weighting f of a graph G assigns an integer

weight to each edge of G and generates a color φ(v) at each vertex v

that is the sum of the weights on edges incident to v. A total weight-

ing f assigns weights to both vertices and edges, and then φ(v) is f(v)
plus the sum of the weights on the incident edges. In either case, f

is proper if φ is a proper coloring of G.

We use “proper” since the weighting produces a proper vertex col-

oring; “neighbor-distinguishing” was an earlier term for this. The mo-

tivation for the problem is that when the weights are taken as edge-

multiplicities, adjacent vertices will have distinct degrees. It is then

natural to seek such a weighting with small multiplicities. Note that

K2 has no proper weighting, although it has a proper total weighting.

20.2.45. CONJECTURE. (1,2,3-Conjecture; Karonski–Łuczak–Thomason[2004]) Every graph without isolated edges has a proper weighting

using weights in {1 , 2 , 3}.
20.2.46. Example. Kn has no proper 1 , 2-weighting. In a regular graph

G , subtracting a constant from all edge weights does not affect distinct-

ness of sums at vertices. Hence we may seek a proper weighting from{0 , 1}, which is equivalent to a subgraph H (the edges of weight 1) such

that adjacent vertices of G have distinct degrees in H. This fails when

G = Kn, since every n-vertex graph has two vertices of the same degree,

by the pigeonhole principle (degrees 0 and n− 1 cannot both occur).

The first step was to show that bounded multiplicity always suf-

fices, equivalent to proper weighting from the set [k]. Addario-Berry,

Dalal, McDiarmid, Reed, and Thomason [2007] showed that k = 30 suf-

fices. This was reduced to k = 16 in Addario-Berry–Dalal–Reed [2008]
and to k = 13 in Karonski–Łuczak–Thomason [2004]. A subsequent

breakthrough reduced the bound to k = 5 (Kalkowski–Karoński–Pfender[2010]). The proof of this result was motivated by a breakthrough on the

analogous conjecture about total weightings.

20.2.47. CONJECTURE. (1,2-Conjecture; Przybyło–Woźniak [2010])
Every graph has a proper total weighting using weights in {1 , 2}.
Przybyło and Woźniak verified the conjecture for complete graphs(Exercise 20), 4-regular graphs, and graphs with chromatic number at

most 3. They also showed that weights in [11] always suffice. The break-

through is the following theorem, with a remarkably simple proof.

20.2.48. THEOREM. (Kalkowski [2009+]) Every graph has a proper

total weighting with vertex weights in {1 , 2} and edge weights in{1 , 2 , 3}.
Proof: Begin with two chips on each edge and one chip on each vertex.

The weight of a vertex or edge will be the final number of chips on it.

Process the vertices in some order v1 , . . . , vn. We move a chip onto or

off an edge only when we process its later endpoint. When processing vi ,

we make its color (the number of chips on it and its incident edges) dif-

ferent from the colors of its earlier neighbors, and its color never changes

thereafter. Doing this for v1 , . . . , vn completes the proof.

Before processing vi , the edges from vi to its d earlier neighbors have

two chips. If an earlier neighbor x has one chip, we may move one chip

from vix to x. If x has two chips, then we may move one chip from x to

vix. In each case, the number of chips on x remains in {1 , 2}, the number

of chips on xvi remains in {1 , 2 , 3}, and the color of x does not change.

For each back edge vix, the two possibilities make contributions to

the color at vi that differ by 1 (also there is 1 for vi and 2 for each edge

to later neighbors). The difference between taking each lower option and

taking each higher option is d, and every value between the lowest and

the highest is achievable. Altogether, d+1 consecutive values are achiev-

able for the color of vi. Since the earlier neighbors occupy only d colors,

we can shift chips between the back neighbors and back edges to give vi a

color different from its earlier neighbors.

The proof that graphs without isolated edges have proper weightings

from {1 , 2 , 3 , 4 , 5} has a similar flavor. Edges initially have three chips,
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and processing of back edges may be add or remove two chips. Since ver-

tices have no chips, this changes the colors on earlier neighbors. Hence a

stronger hypothesis is needed about the weights used on the earlier neigh-

bors, and the option of removing or adding one chip is also needed.

List versions of these conjectures allow arbitrary lists of integer la-

bels at the vertices or edges, from which the weights must be chosen.

20.2.49. DEFINITION. A (k , k′)-total list assignment for a graph G

is a map L that assigns each vertex a set of k numbers and each edge

a set of k′ numbers. The graph G is (k , k′)-weight-choosable if for

every (k , k′)-total list assignment, a proper total weighting can be

chosen from the lists.

Since a (1 , 3)-total list assignment may assign list {0} to each vertex,(1 , 3)-weight-choosability is stronger than choosability when just edge

weights from lists of size 3, which in turn is stronger than the 1,2,3-

Conjecture. Bartnicki–Grytczuk–Niwczyk [2009] conjectured the inter-

mediate property for every graph without isolated edges; they proved this

for complete graphs, complete bipartite graphs, and others. In fact, their

argument showed that these graphs are (1 , 3)-weight-choosable. This

suggests the strongest possible conjectures for weight choosability.

20.2.50. CONJECTURE. (Wong–Zhu [2009+]) Every graph is (2 , 2)-
weight-choosable. Every graph without isolated edges is (1 , 3)-
weight-choosable.

We now drop the word “weight” and just write (k , k′)-choosable.

To motivate this, note that a (k , 1)-total list assignment may assign

list {0} to every edge, and hence every (k , 1)-weight-choosable graph

is k-choosable. Thus (k , k′)-choosability generalizes the notion of k-

choosability. Since larger lists don’t hurt, every (k , k′)-choosable graph

is (k , k′+1)-choosable and (k+1 , k′)-choosable. Thus a weaker conjecture

is that for some (k , k′) every graph is (k , k′)-choosable. The conjectures

are sharp, since some graphs are not (1 , 2)-choosable.

20.2.51. Example. Failure of (1 , 2)-choosability. For the complete graph

Kn, we showed in Example 20.2.46 that no proper total-weighting can be

chosen when the vertex lists are all {0} and the edge lists are all {0 , 1}.
Our second example is the small tree with vertex lists of size 1 shown

below and edge lists all {0 , 1}. Since the central edge contributes equally

to its endpoints, the choices on the two “ends” must contribute different

amounts to the central vertices. If the pendant edges on one side con-

tribute 0 and 1, then we will not be able to assign 0 or 1 to the middle

edge. Hence we must have two 0s on one side and two 1s on the other, but

now selecting 0 for the middle 0 violates the edges on the side with 1s,

and selecting 1 violates the edges on the side with 0s.

•
•

•
•
•

•

1

0
1

0

1

1

20.2.52. REMARK. The tree in Example 20.2.51 has an odd number of

edges. Infinitely many trees of odd size fail to be (1 , 2)-choosable (Exer-

cise 21), but Wong–Zhu [2009+] used the Combinatorial Nullstellensatz

to show that all trees with an even number of edges are (1 , 2)-choosable.

From this it follows easily that all trees are (2 , 2)-choosable(Exercise 22).
Wong–Zhu [2009+] also applied the Nullstellensatz to show that com-

plete graphs (and in general all complements of linear forests) are (2 , 2)-
choosable (true also for cycles, generalized theta graphs, etc.). Via an

inductive proof (not Nullstellensatz), Wong–Yang–Zhu [2009+] proved(1 , 2)-choosability for complete multipartite graphs with at most two

parts of size greater than 2 (this includes complete bipartite graphs).
Later, Wong–Zhu [2012+] proved that every graph is (2 , 3)-choosable.

This statement does not prove either the 1 , 2 , 3-Conjecture or the 1 , 2-

Conjecture and is weaker than Conjecture 20.2.50, but it is stronger than

Theorem 20.2.48 and applies to all graphs. The setup using the Combina-

torial Nullstellensatz is the same as for their work on (1 , 2)-choosability,

but the combinatorial tricks to produce the nonzero coefficient are differ-

ent. We will present both results.

20.2.53. REMARK. (k , k′)-choosability via the Combinatorial Nullestel-

lensatz. Let G be a graph with n vertices and m edges. To apply the

Nullstellensatz, we need a polynomial f where the variables take val-

ues from the lists, and the value of f is nonzero if and only if the re-

sulting weighting is proper. The choice of f is obvious. Given variables

x1 , . . . , xm corresponding to the edges e1 , . . . , em and variables y1 , . . . , yn

corresponding to the vertices v1 , . . . , vn, let

f(x , y) =∏uw∈E(D)(φ(w)− φ(u)),
where φ(vi) is the total weight seen by vertex vi and D is a fixed orienta-

tion of G , chosen just to specify the signs. The value of f is nonzero if

and only if the weights given by the values of x and y form a proper total
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weighting of G , regardless of the choice of D. With Γ(v) denoting the set

of edges incident to a vertex v, we have φ(vi) = yi +∑ej∈Γ(vi) xj .

Each factor is a homogeneous polynomial of degree 1, so f has de-

gree m. To prove (k , k′)-choosability via the Combinatorial Nullstellen-

satz, we want the coefficient of an appropriate monomial in the expan-

sion of f to be nonzero. This suffices if the degree of each variable in

the monomial is less than the size of the corresponding list. For (1 , 2)-
choosability, there is only one choice: the term must be ∏m

i=1 xi , with

each edge-variable having degree 1 and each vertex-variable having de-

gree 0. For (2 , 2)-choosability, it suffices to have a nonzero term using

any m variables from among the edges and vertices to have degree 1. For(2 , 3)-choosability, we can allow edge variables to appear with degree 2.

The next lemma describe the coefficients of the multilinear terms.

20.2.54. LEMMA. Let G be a graph with vertices v1 , . . . , vn and edges

e1 , . . . , em. Given an orientation D, let f(x , y) be the polynomial de-

fined in Remark 20.2.53. Defina a matrix A with m rows indexed by

edges and m+ n columns indexed by edges and vertices, by

Auw,z =

⎧⎪⎪⎨⎪⎪⎩
−1 if z = u or z ∈ Γ(u)− {uw},
1 if z = w or z ∈ Γ(w)− {uw},
0 otherwise.

If S is a multiset of m variables from {x1 , . . . , xm} ∪ {y1 , . . . , yn},
with each variable z selected h(z) times, then the coefficient of∏z∈S z

in f(x , y) is 1/∏z h(z)! times the permanent of the matrix B whose

columns are the columns of A for S (with multiplicity).
Proof: The factor in f for the edge uw in D is the dot product of the row

in A indexed by uw with the vector (x1 , . . . , xm , y1 , . . . , yn) of variables.

A nonzero contribution to a coefficient in the expansion of f is the product

of a term from each of the m factors. The selected term from a factor e is

a variable for a column in A, and the sign on it is ±1 as recorded in the

row of A corresponding to e. Selecting a variable h times can be modeled

by repeating the column h times among the m columns in B. However,

each contribution that selects this variable h times appears h! times in

the computation of the permanent of B. The computation of per B sums

all such contributions.

In particular, we obtain a nonzero coefficient for the term in f(x , y)
with specified exponents if and only if the m-by-m matrix using columns

of A with the specified multiplicities has nonzero permanent.

20.2.55. REMARK. Lemma 20.2.54 implies that the (1 , 3)-choosability

part of Conjecture 20.2.50 would follow from the Permanent Conjec-

ture of J. Kahn: If A is an invertible m-by-m matrix, then there is an

m-by-m submatrix of [AA] having nonzero permanent. Yang Yu general-

ize the Permanent Conjecture to submatrices of [AB] whenever A and B

are invertible over the same field. The general conjecture is equivalent

to the Additive Basis Conjecture of Alon and Tarsi and has various con-

sequences in graph theory, including that every 6-edge-connected graph

has a nowhere-zero 3-flow (see Chapter 9).
20.2.56. THEOREM. (Zhu–Wong [2013+])Every graph is(2 , 3)-choosable.

Proof: We use induction on the number of vertices to construct the de-

sired matrix with nonzero permanent from columns of the matrix AG

defined in Lemma 20.2.54. Let A(z) denote the column of AG correspond-

ing to the variable for z. We use repeatedly the important observation

that A(uv) = A(u)+ A(v) for each edge uv. Also important is the linearity

of the permanent in each column: if matrices B and B′ are the same ex-

cept in column j , and C agrees with both except for its jth column being

the sum of the other two, then per C = per B+ per B′.
The claim holds vacuously for K1 ; let G be a larger graph. Let v be

a vertex of G , and let G′ = G − v. Let M′ be the matrix for G′ guaran-

teed by the induction hypothesis, using columns of AG′ with appropriate

multiplicity. Let e1 , . . . , ed be the edges incident to v, oriented toward v.

Index the other endpoints of e1 , . . . , ed as v1 , . . . , vd , respectively. Let M

be the matrix consisting of M′ in the upper left, plus rows for e1 , . . . , ed

and d copies of the column for v in AG ; this column A(v) is 0 in the rows

corresponding to edges of G′ and 1 in the rows for e1 , . . . , ed. Nonzero

contributions to per M must take m factors from d-by-d matrix in the

lower-right corner. Hence per M = d! per M′ 6= 0.

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v · · · v

0 · · · 0

M′
...

...

0 · · · 0

e1 · · · 1 · · · 1
... · · ·

...
...

ed · · · 1 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
We now have a matrix built from columns of AG with nonzero perma-

nent, but it uses d copies of A(v). Note first that since A(vi) = A(ei)− A(v)
for 1 ≤ i ≤ d, we can think of any use of column A(vi) as yielding a sum

of two permanents. The matrix with A(vi) replaced by A(v) has d + 1
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columns in which all the nonzero entries are confined to d rows; hence

its permanent is 0. This means that in M we can replace the appear-

ance of any column for a vertex vi adjacent to v with the column for the

corresponding edge ei , without changing the permanent.

We are now free to reintroduce A(vi), and we are also free to use an-

other copy of A(ei). Now treat the d copies of A(v) as copies of A(e1) −
A(v1) , . . . , A(ed)− A(vd). Expanding via linearity expresses per M as the

sum of 2d permanents. Since per M 6= 0, at least one of the resulting

matrices has nonzero permanents and uses each column of AG with suffi-

ciently small multiplicity.

20.2.57. REMARK. If we replace all copies of A(v) in the final step of the

proof of Theorem 20.2.56, then A(v) appears with multiplicity 0. If for

some i we omit the substitution of A(ei)− A(v) for A(vi) in the first step

and then also the substitution of A(ei) − A(vi) for A(v) in the last step,

then A(ei) appears with multiplicity 0.

These observations imply that a proper total weighting can still be

chosen from a total list assignment where the vertices of an independent

set are given lists of size 1, or where the edges of a spanning tree are given

lists of size 1. More generally, we can specify arbitrary weights at any

independent set and on the edges of any forest not using those vertices,

and still we can complete a proper total weighting from lists of size 2 on

the remaining vertices and size 3 on the remaining edges.

Now we return to 1 , 2-choosability for trees. As noted in Remark

20.2.53, for a proof of (1 , 2)-choosability we need to show that [∏m

i=1 xi]f(x , y)
is nonzero, where x1 , . . . , xm are the variables for the edges. Gerard

Chang noted a useful fact about this.

20.2.58. LEMMA. Let AG be the matrix of Lemma 20.2.54 for the con-

nected graph G with orientation D, and let B(G) denote the square

submatrix of AG whose columns correspond to the edge variables. If

G has a cut-edge e, with G − e having components G1 and G2 , then

per B(G) = per B(G1)per B(G′2)+ per B(G′1)per B(G2),
where G′i is the subgraph consisting of Gi plus e (and its endpoint).

Proof: We apply row-linearity of the permanent to B(G). Let E(G1) ={e1 , . . . , et−1} and E(G2) = {et+1 , . . . , em}, so e = et. Letting z denote an

entry that may be anything in {0 , 1 ,−1}, we have

B(G) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 · · · xt−1 xt xt+1 · · · xm

e1 z
... B(G1) z 0

et−1 z

et z z z 0 z z z

et+1 z
... 0 z B(G2)
em z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Now obtain u1 and u2 from row t of B(G) by setting the first t − 1

positions or last m − t positions to 0, respectively. Let Bi be the ma-

trix obtained from B(G) by replacing row t with ui. Since row t of B(G)
is u1

+ u2 , we have per B(G) = per B1 + per B2 . To obtain a nonzero

contribution to per B1 , the nonzero terms from rows et , . . . , em lie in

columns xt , . . . , xm, so the nonzero terms from rows e1 , . . . , et−1 must lie

in columns x1 , . . . , xt−1 . Thus per B1 = per B(G1)per B(G′2 ; similarly,

per B2 = per B(G′1)per B(G2).
20.2.59. THEOREM. (Wong–Zhu [2009+]) Every tree with an even

number of edges is (1 , 2)-choosable.

Proof: Let G be a tree with m edges. For (1 , 2)-choosability, by Remark

20.2.53 and Lemma 20.2.54 it suffices to prove that per B(G) 6= 0. To

prove this when m is even, we prove that per B(G) ≡ m−1 (mod 2). Since

all nonzero contributions are ±1 and we care only about parity, we may

change all nonzero entries to +1 and ignore the orientation. The matrix

B(G), expressed modulo 2 in this way, becomes actually the adjacency

matrix of the line graph of G.

We apply Lemma 20.2.58 to prove the claim inductively. For all of

G1 , G2 , G′1 , G′2 to be smaller than G , the cut-edge e in the induction step

must not be incident to a leaf. Hence the base step is when G is a star.

When G is a star, each edge is incident to every other. Hence B(G) =
Jm− Im, where Jm and Im are the m-by-m all-1 and identity matrices. The

permanent equals the number of permutations of [m] with no fixed point,

which is the derangement number Dm. The derangement numbers are

computed recursively by D0 = 1, D1 = 0, and Dm = (m− 1)(Dm−1 + Dm−2)(see Chapter 16). Reducing modulo 2, it follows immediately by induction

that Dm ≡ (m− 1) (mod 2).
For the induction step, when G is not a star it has an edge et inci-

dent to no leaf, with G − et having components G1 and G2 with t− 1 and

m − t edges, respectively. Since each matrix in the formula of Lemma

20.2.58 is the special matrix that arises from a tree, Lemma 20.2.58 and

the induction hypothesis yield
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per B(G)= per B(G1)per B(G′2)+ per B(G′1)per B(G2)
≡ (t − 2)(m− t)+ (t − 1)(m− t − 1)
≡ 2(t − 2)(m− t − 1)+ (t − 2)+ (m− t − 1) ≡ m− 1 (mod 2).

20.2.60. REMARK. In proving that Kn (and complements of linear

forests) are (2 , 2)-choosable, again we use the same polynomial, produc-

ing the same matrix of coefficients. However, since vertex lists and edge

lists both have size 2, we may consider any m variables, where m = |E(G)|.
Choosing these columns yields a square matrix, and again the task is to

show that the permanent is nonzero (not modulo 2). The difficulty is pick-

ing the right columns (variables) to delete.

Index the vertices as v1 , . . . , vn. It turns out that the computation be-

comes feasible when the variables for vertex v1 and edges vivi+1 with 1 ≤
i ≤ n− 1 are deleted. The permanent of the matrix with these columns

deleted is the coefficient for the multilinear monomial with the remaining

m variables. Using induction and linearity properties of the permanent,

one can show that this permanent is nonzero.

EXERCISES

20.2.1. (−) In a town with n people, there are m sports clubs A1 , . . . , Am and m

theater clubs B1 , . . . , Bm. Prove that if |Ai ∩ Bi| is odd for every i, and |Ai ∩ Bj |
is even whenever i < j , then m ≤ n, and this is sharp.

20.2.2. Prove that there are between 2n(n+2)/8/(n!)2 and 2n2
/n! nonisomorphic sets

of n odd-sized subsets of [n] such that the intersection of every pair has even size.

Two such sets are isomorphic if one can be obtained from the other by permuting[n]. (Hint: Let n = 2k. From a k-by-k binary matrix A, form an n-by-n binary

matrix (A+Ik A

A A+Ik
).) (Szegedy [1988])

20.2.3. (♦) Let A be an m-by-m matrix of integers. Prove that if some prime

power divides every off-diagonal entry but no diagonal entry, then A is nonsingu-

lar. Conclude that if the greatest common divisor of the elements of L does not

divide k , then every L-intersecting family of subsets of [n] has at most n mem-

bers. (Comment: If 0 ∈ L, gcd(L) | k , and k ≥ |L|(max(L))2 , then when n ≥ 2k2

there is an L-intersecting family of size (n/2k)2 in ([n]
k
).) (Alon–Babai [1980])

20.2.4. (♦) Let X = (t3

3
). Color the complete graph with vertex set X by making

an edge red if its endpoints have one common element and blue otherwise. Con-

clude for diagonal Ramsey numbers that R(t , t) > (t3

3
). (Comment: The graph

(t − 1)Kt−1 gives R(t , t) > (t − 1)2 .) (Nagy [1972])

20.2.5. An inner product space V is nonsingular if no nonzero vector is orthog-

onal to all of V . For a subspace U , let U⊥ = {v ∈ V : ⟨v, u⟩ = 0 for all u ∈ U}.
a) Prove that if V is a nonsingular n-dimensional inner product space, then

dim U + dim U⊥ = n.

b)Prove that in Eventown (Example 20.2.1)at most 2⌊n/2⌋ clubs can be formed.

That is, [n] contains at most 2⌊n/2⌋ sets of even size such that the intersection of

every pair of these sets has even size. (Berlekamp [1969])
20.2.6. By Theorem 20.2.5, in Rn there is no two-distance set with more than(n+ 1)(n+ 4)/2 points. Construct a two-distance set of size (n+1

2
) in Rn. (Hint:

Start with such a set in Rn+1 .)
20.2.7. (+) Improved bound on the size of two-distance sets.

a) In Rn, the affine hull of vectors v1 , . . . , vm is {∑m

i=1
civi: ∑m

i=1
ci = 0}. Let

B be the m-by-(n+1)matrix whose ith row is vi plus 1 in column n+1. Prove that

if the affine hull is all of Rn, then the columns of B are linearly independent.

b)Prove that if the columns of a real m-by-k matrix are linearly independent,

then BT B is nonsingular.

c) Prove that when the polynomials {1 , x1 , . . . , xn} are added to the set of

polynomials constructed from a two-distance set in Theorem 20.2.5, the enlarged

set of polynomials is linearly independent. Conclude that the maximum size of a

two-distance set in Rn is at most (n+2

2
). (Blokhuis [1981])

20.2.8. Given F1 ,F2 ⊆ ([n]k ), let [(F2) denote the permutation of F2 obtained by

applying the permutation [ : [n]→ [n].
a) Letting all permutations of [n] be equally likely, prove that the expecta-

tion of |F1 ∩ [(F2)| is |F1 | |F2|/(n

k
).

b)Suppose that S1 and S2 are disjoint, and suppose that F1 is S1-intersecting

and F2 is S2-intersecting. Prove that |F1 | · |F2 | ≤ (n

k
). (Szegedy [1990])

20.2.9. Choose n , p ∈ N with p prime and n > 2p. Let Gn,p be the graph whose

vertices are the incidence vectors of (2p−1)-sets in [n], with two vertices adjacent

when their distance in Rn is
√

2p. Prove that χ(Gn ,p) ≥ ( n

2p−1
)/( n

p−1
). Improve

the lower bound on the chromatic number of the unit-distance graph in Rn by

choosing p to maximize the lower bound on χ(Gn ,p).
20.2.10. Use Stirling’s Formula(Theorem 16.@.@)to approximate ln ( p3

p2−1
)/ln ( p3

p−1
)

when p is large.

20.2.11. Prove that the points of R2 cannot be colored with three colors so that

points at distance 1 have different colors. Prove that seven colors suffice. (Hint:

For the upper bound, make use of a hexagonal grid.)
20.2.12. Prove that the points of R2 can be colored using nn/2 colors so that points

at distance 1 have different colors.
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20.2.13. Assume Snevily’s Theorem: If L is a set of s positive integers, then

the size of an L-intersecting family of subsets of [n] is at most ∑s

i=0
(n−1

s
). Prove

Theorem 20.2.10 from this.

20.2.14. Show that Theorem 20.2.24 is a special case of Theorem 20.2.25. Prove

Theorem 20.2.25. (Alon–Nathanson–Rusza [1996])
20.2.15. Let A and B be nonempty subsets of Zp, where p is prime. Prove that

the number of sums x + y such that x ∈ A, y ∈ B, and xy 6= 1 is at least

min{p , |A| + |B| − 3}. (Hint: Use Theorem 20.2.25.) (Alon–Nathanson–Rusza[1995])
20.2.16. More from Theorem 20.2.25. (Alon–Nathanson–Rusza [1996])

a) Let c1 , . . . , ck be nonnegative integers summing to m+ (k
2
), where m ≥ 0.

Prove that

[
k∏

i=1

xci
i ](

k∑
i=1

xi)m∏
1≤i< j≤k

(xj − xi) = m!

∏k

i=1
ci!
∏

1≤i< j≤k

(cj − ci).
(Hint: There is a proof using the Hook-length Formula (Theorem 16.2.@) and a

more direct proof.)
b) Let A1 , . . . , Ak be nonempty subsets of Zp, where p is prime. Let

S(A1 , . . . , Ak) denote the set of sums of distinct elements a1 , . . . , ak such that

ai ∈ Ai for all i. Prove that if the sizes of A1 , . . . , Ak are distinct and sum to less

than p+ (k+1

2
), then |S(A1 , . . . , Ak)| >∑k

i=1
|Ai| − (k+1

2
). (Hint: Apply part (a) and

Theorem 20.2.25.)
c) Let A1 , . . . , Ak be nonempty subsets of Zp, where p is prime, indexed so

that |A1 | ≥ · · · ≥ |Ak|. Let b1 = |A1 |, and let bi = min{bi−1 − 1 , |Ai|} for 2 ≤ i ≤ k.

Prove that if bk > 0, then |S(A1 , . . . , Ak)| ≥ min{p ,∑k

i=1
bi − (k+1

2
) + 1}.

d) Conclude that if A is a nonempty subset of Zp , then the number of sums

of s distinct elements of A is at least min{p , s |A| − s2
+ 1}. (Comment: Theorem

20.2.24 is the special case s = 2.) (Dias da Silva–Hamidoune [1994])
20.2.17. Cauchy–Davenport in higher dimensions. The Hopf–Stiefel function

relative to a prime p is a function r ◦ s of positive integers r and s, defined to be

the smallest integer n such that (n

k
) is divisible by p whenever n − r < k < s.

The value can be computed recursively from the base-p representations of r and

s. Note that r ◦ s = r + s − 1 whenever r + s ≤ p+ 1.

a) Prove that if A and B are nonempty subsets of a finite vector space over

Fp, with r = |A| and s = |B|, then |A+ B| ≥ r ◦ s.

b) Prove that part (a) is sharp for all r and s. (Hint: In one dimension, part(a) reduces to the Cauchy–Davenport Theorem. Prove sharpness by generalizing

the sharpness example for that theorem.) (Eliahou–Kervaire [1998])
20.2.18. Use the Combinatorial Nullstellensatz to prove that the minimum num-

ber of hyperplanes in Rn that do not contain 0 but together cover all the other

points in {0 , 1}n is n. (Alon–Füredi [1993])
20.2.19. The Permanent Lemma.

a) Let A be an n-by-n matrix with nonzero permanent over a field F. Prove

that for any b ∈ Fn and sets S1 , . . . , Sn of size 2 in F, there is an vector x ∈∏n

i=1
Si

such that Ax differs from b in every coordinate. (Alon–Tarsi [1989])
b)Let p be a prime. Prove that every list of 2p− 1 members of Zp contains p

terms that sum to 0 modulo p. (Erdős–Ginzburg–Ziv [1961])
20.2.20. Prove that the 1 , 2-Conjecture holds for complete graphs. (Przybyło–

Woźniak [2010])
20.2.21. Construct infinitely many trees that are not (1 , 2)-choosable. (Wong–

Zhu [2009+])
20.2.22. (♦) Let G be a tree with an odd number of edges. Give each edge a list

of size 2 and each vertex a list of size 1, except that one vertex has a list of size 2.

Use Theorem 20.2.59 to prove that a proper total weighting of G can be chosen

from the lists. Conclude that all trees are (2 , 2)-choosable. (Wong–Zhu [2009+])
20.2.23. (♦) For each vertex v in a graph G, specify B(v) ∈ {1 , . . . , dG(v)}.

a) Prove that if∑v∈V(G) |B(v)| < |E(G)|, then G has a nontrivial subgraph H

such that dH(v) /∈ B(v) for all v ∈ V(G) (note that degree 0 is allowed, but not at

all vertices). (Shirazi–Verstraëte [2008])
b)Show that part (a) is sharp by constructing infinitely many examples with∑v∈V(G) |B(v)| = |E(G)| where no such subgraph exists.

20.2.24. Let p be an odd prime, and let k be an integer with 1 ≤ k < p. Given

a1 , . . . , ak ∈ Fp and distinct elements b1 , . . . , bk ∈ Fp , prove that there is a per-

mutation [ of [k] such that the values ai + b[(i) are distinct modulo p. (Hint: Use

the Vandermonde determinant in an application of the Combinatorial Nullstel-

lensatz.) (Alon [2000])
20.2.25. Given a permutation [ of [k], let d[(i , j) = a− b, where the positions of

i and j in the word form are a and b, respectively.

a)For each pair (i , j)with 1 ≤ i < j ≤ k , specify a forbidden distance f(i , j).
Prove that there is a permutation [ such that d[(i , j) 6= f(i , j) for 1 ≤ i < j ≤ k.

b) Let n and k be positive integers with 2k ≤ n+ 1. Apply part (a) to prove

that for any list a1 , . . . , ak of elements of Zn , there is a permutation [ ∈ Sk such

that the elements a[(i) + i for 1 ≤ i ≤ k are distinct modulo n.(Comment: This result was used to show that every tree with n edges and

radius r decomposes some complete graph with at most 32(2r+ 4)n2
+ 1 vertices.)(Kézdy–Snevily [2002])

20.2.26. Let v be a vertex in a tree T . Prove that if a tree T ′ with m edges

obtained by adding pendant edges at v to T , where 2m + 1 is prime and m is

sufficiently large, then T ′ has a ρ-valuation. (Kézdy [2006])
20.2.27. Let T be a stunted tree with m edges in the canonical indexing

e1 , . . . , em used in Theorem 20.2.33, where 2m+ 1 is prime. Modify the proof of

Theorem 20.2.33 to show that if S1 , . . . , Sm are subsets of Z2m+1 such that |Si| = i

for 1 ≤ i ≤ m, then T has a ρ-valuation such that the difference on edge ei is not

in Si . (Kézdy [2006])


