Alon-Babai-Suzuki's Conjecture related to binary codes in non-modular version

K.-W. Hwang, T. Kim, L.C. Jang, P. Kim, Gyoyong Sohn
Department of Mathematics, Donga-A University, Pusan 604-714, South Korea
Division of General Edu.-Math., Kwangwoon University, Seoul 139-701 South Korea
Dept. of Math. and Comp. Sci., Konkook University, Chungju 139-701, South Korea
Dept. of Math.,Kyungpook National University, Taegu 702-701, South Korea
Dept of Comput. Sci., Chungbuk National University, Cheongju 361-763, South Korea

Abstract

Let $K=\left\{k_{1}, k_{2}, \ldots, k_{r}\right\}$ and $L=\left\{l_{1}, l_{2}, \ldots, l_{s}\right\}$ be sets of nonnegative integers. Let $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{m}\right\}$ be a family of subsets of $[n]$ with $\left|F_{i}\right| \in K$ for each i and $\left|F_{i} \cap F_{j}\right| \in L$ for any $i \neq j$. Every subset F_{e} of $[n]$ can be represented by a binary code $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ such that $a_{i}=1$ if $i \in F_{e}$ and $a_{i}=0$ if $i \notin F_{e}$. Alon-Babai-Sukuki made a conjecture in 1991 ([2]) in modular version. We prove Alon-Babai-Sukuki's Conjecture in non-modular version: For any K and L with $n \geq s+\max k_{i},|\mathcal{F}| \leq\binom{ n}{s}+\binom{n}{s-1}+\cdots+\binom{n}{s-r+1}$.

1 Introduction

In this paper, \mathcal{F} stands for a family of subsets of $[n]=\{1,2, \ldots, n\}, K=\left\{k_{1}, \ldots, k_{r}\right\}$ and $L=\left\{l_{1}, \ldots, l_{s}\right\}$ where $\left|F_{i}\right| \in K$ for all $F_{i} \in \mathcal{F},\left|F_{i} \cap F_{j}\right| \in L$ for all $F_{i}, F_{j} \in \mathcal{F}, i \neq j$. The variable x will stand as a short-hand for the n-dimensional vector variable ($x_{1}, x_{2}, \ldots, x_{n}$). Also, since these variables will take the values only 0 and 1 , all the polynomials we will work with will be reduced modulo the relation $x_{i}{ }^{2}=x_{i}$. We define the characteristic vector $v_{i}=\left(v_{i 1}, v_{i 2}, \cdots, v_{i n}\right)$ of F_{i} such that $v_{i j}=1$ if $j \in F_{i}$ and $v_{i j}=0$ if $j \notin F_{i}$. We will present some results in this paper that give upper bounds on the size of \mathcal{F} under various conditions. Below is a list of related results by others.

Key words and Phrases: Extremal set theory, intersection families, polynomial method

Theorem 1. (Ray-Chaudhuri and Wilson [1]) If $K=\{k\}$, and L is any set of nonnegative integers with $k>\max l_{j}$, then $|\mathcal{F}| \leq\binom{ n}{s}$.

Theorem 2. (Alon, Babai, and Suzuki [2]) If K and L are two sets of nonnegative integers with $k_{i}>s-r$, for every i, then $|\mathcal{F}| \leq\binom{ n}{s}+\binom{n}{s-1}+\cdots+\binom{n}{s-r+1}$.

Theorem 3. (Snevily [3]) If K and L are any sets such that $\min k_{i}>\max l_{j}$, then $|\mathcal{F}| \leq\binom{ n-1}{s}+\binom{n-1}{s-1}+\cdots+\binom{n-1}{0}$.
Theorem 4. (Snevily [7]) Let K and L be sets of nonnegative integers such that min $k_{i}>\max l_{j}$. Then, $|\mathcal{F}| \leq\binom{ n-1}{s}+\binom{n-1}{s-1}+\cdots+\binom{n-1}{s-2 r+1}$.
Conjecture 5. (Snevily [4]) For any K and L with $\min k_{i}>\max l_{j},|\mathcal{F}| \leq\binom{ n}{s}$.
In the same paper in which he stated the above conjecture, Snevily mentions that it seems hard to prove the above bound and states the following weaker conjecture.
Conjecture 6. (Snevily [4]) For any K and L with $\min k_{i}>\max l_{j},|\mathcal{F}| \leq\binom{ n-1}{s}+$ $\binom{n-1}{s-1}+\cdots+\binom{n-1}{s-r}$.

Hwang and Sheikh [8] proved the bound of Conjecture 6 when K is a consecutive set. The second theorem we prove is a special case of Conjecture 6 with the extra condition that $\bigcap_{i=1}^{m} F_{i} \neq \emptyset$. These two theorems are stated hereunder.
Theorem 7. (Hwang and Sheikh [8])Let $K=\left\{k_{1}, k_{2}, \ldots, k_{r}\right\}$ where $k_{i}=k_{1}+i-1$, $k_{1}>s-r$, and $L=\left\{l_{1}, l_{2}, \ldots, l_{s}\right\}$. Let $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{m}\right\}$ be such that $\left|F_{i}\right| \in K$ for each $i,\left|F_{i}\right| \notin L$, and $\left|F_{i} \cap F_{j}\right| \in L$ for any $i \neq j$. Then $|\mathcal{F}| \leq\binom{ n-1}{s}+\binom{n-1}{s-1}+\cdots+\binom{n-1}{s-r}$.
Theorem 8. (Hwang and Sheikh [8]) Let $K=\left\{k_{1}, k_{2}, \ldots, k_{r}\right\}, L=\left\{l_{1}, l_{2}, \ldots, l_{s}\right\}$, and $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{m}\right\}$ be such that $\left|F_{i}\right| \in K$ for each $i,\left|F_{i} \cap F_{j}\right| \in L$ for any $i \neq j$, and $k_{i}>s-r$. If $\bigcap_{i=1}^{m} F_{i} \neq \emptyset$, then $|\mathcal{F}| \leq\binom{ n-1}{s}+\binom{n-1}{s-1}+\cdots+\binom{n-1}{s-r}$.
Theorem 9. (Alon, Babai and Suzuki [2]) Let K and L be subsets of $\{0,1, \ldots, p-1\}$ such that $K \cap L=\emptyset$, where p is a prime and $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{m}\right\}$ be a family of subsets of $[n]$ such that $\left|F_{i}\right|(\bmod p) \in K$ for all $F_{i} \in \mathcal{F}$ and $\left|F_{i} \cap F_{j}\right|(\bmod p) \in L$ for $i \neq j$. If $r(s-r+1) \leq p-1$, and $n \geq s+\max k_{i}$, then $|\mathcal{F}| \leq\binom{ n}{s}+\binom{n}{s-1}+\cdots+\binom{n}{s-r+1}$.
Conjecture 10. (Alon, Babai and Suzuki [2]) Let K and L be subsets of $\{0,1, \ldots, p-1\}$ such that $K \cap L=\emptyset$, where p is a prime and $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{m}\right\}$ be a family of subsets of $[n]$ such that $\left|F_{i}\right|(\bmod p) \in K$ for all $F_{i} \in \mathcal{F}$ and $\left|F_{i} \cap F_{j}\right|(\bmod p) \in L$ for $i \neq j$. If $n \geq s+\max k_{i}$, then $|\mathcal{F}| \leq\binom{ n}{s}+\binom{n}{s-1}+\cdots+\binom{n}{s-r+1}$.

In [2], Alon, Babai, and Suzuki proved their conjectured bound under the extra conditions that $r(s-r+1) \leq p-1$ and $n \geq s+\max k_{i}$. Qian and Ray-Chaudhuri ([5]) proved that if $n>2 s-r$ instead of $n \geq s+\max k_{i}$, then the above bound holds.

We prove a Alon-Babai-Suzuki's conjecture in non-modular version.

Theorem 11. Let $K=\left\{k_{1}, k_{2}, \ldots, k_{r}\right\}, L=\left\{l_{1}, l_{2}, \ldots, l_{s}\right\}$ be two sets of nonnegative integers and $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{m}\right\}$ be such that $\left|F_{i}\right| \in K$ for each $i,\left|F_{i} \cap F_{j}\right| \in L$ for any $i \neq j$, and $n \geq s+\max k_{i}$. then $|\mathcal{F}| \leq\binom{ n}{s}+\binom{n}{s-1}+\cdots+\binom{n}{s-r+1}$.

2 Proof of Theorem

Proof of Theorem 11 For each $F_{i} \in \mathcal{F}$, consider the polynomial

$$
f_{i}(x)=\prod_{\substack{j \\ l_{j}<\left|F_{i}\right|}}\left(v_{i} \cdot x-\left(k_{i}-l_{j}\right)\right),
$$

where v_{i} is the characteristic vector of F_{i} and v_{i}^{*} is the characteristic vector of $F_{i}^{*}=F_{i}-\{1\}$. Let $\overline{v_{i}}$ be the characteristic vector of F_{i}^{c}, and \bar{v}_{i}^{*} be the characteristic vector of $\left(F_{i}^{c}\right)^{*}$.

We order $\left\{F_{i}\right\}$ by size of F_{i}, that is, $\left|F_{j}\right| \leq\left|F_{k}\right|$ if $j<k$. We substitute the characteristic vector $\overline{v_{i}}$ of F_{i}^{c} by order of size of F_{i}. Clearly, $f_{i}\left(\overline{v_{i}}\right) \neq 0$ for $1 \leq i \leq r$ and $f_{i}\left(\overline{v_{j}}\right)=0$ for $1 \leq j<i \leq r$. Assume

$$
\sum_{i} \alpha_{i} f_{i}(x)=0 .
$$

We prove that $\left\{f_{i}(x)\right\}$ is linearly independent. Assume that this is false. Let i_{0} be the smallest index such that $\alpha_{i_{0}} \neq 0$. We substitute $\overline{v_{i_{0}}}$ into the above equation. Then we get $\alpha_{i_{0}} f_{i_{0}}\left(\overline{v_{i_{0}}}\right)=0$. We get a contradiction. So $\left\{f_{i}(x)\right\}$ is linearly independent. Let $\mathcal{E}=\left\{E_{1}, \ldots, E_{e}\right\}$ be the family of subsets of $[n]$ with size at most $s-r$, which is ordered by size, that is, $\left|E_{i}\right| \leq\left|E_{j}\right|$ if $i<j$, where $e=\sum_{i=0}^{s-r}\binom{n}{i}$. Let u_{i} denote the characteristic vector of E_{i}. We define the multilinear polynomial g_{i} in n variables for each E_{i} :

$$
g_{i}(x)=\prod_{l=1}^{r}\left(\sum_{t=1}^{n} x_{t}-\left(n-k_{l}\right)\right) \prod_{j \in E_{i}} x_{j} .
$$

We prove that $\left\{g_{i}(x)\right\}$ is linearly independent. Assume that

$$
\sum_{i} \beta_{i} g_{i}(x)=0
$$

Choose the smallest size of E_{i}. Let u_{i} be the characteristic vector of E_{i}. We substitute u_{i} into the above equation. We know that $g_{i}\left(u_{i}\right) \neq 0$ and $g_{j}\left(u_{i}\right)=0$ for any $i<j$. Since $n \geq s+\max k_{i}$, we get $\beta_{i}=0$. If we follow the same process, then the family $\left\{g_{i}(x)\right\}$ is
linearly independent. Next, we prove that $\left\{f_{i}(x), g_{i}(x)\right\}$ is linearly independent. Now, assume that

$$
\sum_{i} \alpha_{i} f_{i}(x)+\sum_{i} \beta_{i} g_{i}(x)=0 .
$$

Let F_{1} be the smallest size of F_{i}. We substitute the characteristic vector $\overline{v_{1}}$ of F_{1}^{c} into the above equation. Since $\left|F_{i}^{c}\right|=n-k_{l}, g_{i}\left(\overline{v_{1}}\right)=0$ for all i. We only get $\alpha_{1} f_{1}\left(\overline{v_{1}}\right)=0$. So $\alpha_{1}=0$. By the same way, choose the smallest size from $\left\{F_{i}\right\}$ after deleting F_{1}. We do the same process. We also can get $\alpha_{2}=0$. By the same process, we prove that all $\alpha_{i}=0$. We prove that $\left\{f_{i}(x), g_{i}(x)\right\}$ is linearly independent.

Any polynomial in the set $\left\{f_{i}(x), g_{i}(x)\right\}$ can be represented by a linear combination of multilinear monomials of degree $\leq s$. The space of such multilinear polynomials has dimension $\sum_{i=0}^{s}\binom{n}{i}$. We found $|\mathcal{F}|+\sum_{i=0}^{s-r}\binom{n}{i}$ linearly independent polynomials with degree at most s. So $|\mathcal{F}|+\sum_{i=0}^{s-r}\binom{n}{i} \leq \sum_{i=0}^{s}\binom{n}{i}$. Thus $|\mathcal{F}| \leq\binom{ n}{s}+\binom{n}{s-1}+\cdots+\binom{n}{s-r+1}$.

Acknowledgement

We thank Zoltán Füredi for encouragement to write this paper. The present research has been conducted by the research grant of the Kwangwoon University in 2009.

References

[1] D. K. Ray-Chaudhuri and R. M. Wilson, On t-designs, Osaka. J. Math, 12 (1975), 737-744.
[2] N. Alon, L. Babai, and H. Suzuki, Multilinear polynomials and Frankl-Ray-Chaudhuri-Wilson type intersection theorems, J. Comb. Theory Ser.A, 58 (1991), 165-180.
[3] H. S. Snevily, On generalizations of the deBruijn-Erdős Theorem, J. Combin. Theory Ser. A, 68 (1994), 232-238.
[4] H. S. Snevily, A generalization of the Ray Chaudhuri-Wilson Theorem, J. Combin. Designs, 3 (1995), 349-352.
[5] Jin Qian and D. K. Ray-Chaudhuri, On mod-p Alon-Babai-Suzuki inequality, J. Algebraic Combin., 12 (2000), 85-93.
[6] Jin Qian and D. K. Ray-Chaudhuri, Extremal case of Frankl-Ray-Chaudhuri-Wilson inequality, Special issue on design combinatorics: in honor of S. S. Shrikhande, J. Statist. Plann. Inference, 95 (2001), 293-306.
[7] H. S. Snevily, A sharp bound for the number of sets that pairwise intersect at k positive values, Combinatorica, 23 (2003), 521-533.
[8] K-W. Hwang and N. Sheikh, Intersection families and Snevily's conjecture, European Journal of Combinatorics, 28 (2007), 843-847.
[9] W. Cao, K-W. Hwang, and D. West, Improved Bounds on Families Under k-wise Set-Intersection Constraints, Graphs and Combinatorics, 23 (2007), 381-386.
[10] Z. Furedi, K-W. Hwang, and P. Weichsel, A proof and generalizations of the Erdos-Ko-Rado theorem using the method of linearly independent polynomials, Topics in Discrete Mathematics, 26 (2006), 215-224.

