Alon-Babai-Suzuki's Conjecture related to binary codes in non-modular version

K.-W. Hwang, T. Kim, L.C. Jang, P. Kim, Gyoyong Sohn

Department of Mathematics, Donga-A University, Pusan 604-714, South Korea

Division of General Edu.-Math., Kwangwoon University, Seoul 139-701 South Korea

Dept. of Math. and Comp. Sci., Konkook University, Chungju 139-701, South Korea

Dept. of Math., Kyungpook National University, Taegu 702-701, South Korea

Dept of Comput. Sci., Chungbuk National University, Cheongju 361-763, South Korea

Abstract

Let $K = \{k_1, k_2, ..., k_r\}$ and $L = \{l_1, l_2, ..., l_s\}$ be sets of nonnegative integers. Let $\mathcal{F} = \{F_1, F_2, ..., F_m\}$ be a family of subsets of [n] with $|F_i| \in K$ for each iand $|F_i \cap F_j| \in L$ for any $i \neq j$. Every subset F_e of [n] can be represented by a binary code $\mathbf{a} = (a_1, a_2, ..., a_n)$ such that $a_i = 1$ if $i \in F_e$ and $a_i = 0$ if $i \notin F_e$. Alon-Babai-Sukuki made a conjecture in 1991 ([2]) in modular version. We prove Alon-Babai-Sukuki's Conjecture in non-modular version: For any K and L with $n \geq s + \max k_i, |\mathcal{F}| \leq {n \choose s} + {n \choose s-1} + \cdots + {n \choose s-r+1}$.

1 Introduction

In this paper, \mathcal{F} stands for a family of subsets of $[n] = \{1, 2, ..., n\}$, $K = \{k_1, ..., k_r\}$ and $L = \{l_1, ..., l_s\}$ where $|F_i| \in K$ for all $F_i \in \mathcal{F}$, $|F_i \cap F_j| \in L$ for all $F_i, F_j \in \mathcal{F}, i \neq j$. The variable x will stand as a short-hand for the n-dimensional vector variable $(x_1, x_2, ..., x_n)$. Also, since these variables will take the values only 0 and 1, all the polynomials we will work with will be reduced modulo the relation $x_i^2 = x_i$. We define the characteristic vector $v_i = (v_{i1}, v_{i2}, \cdots, v_{in})$ of F_i such that $v_{ij} = 1$ if $j \in F_i$ and $v_{ij} = 0$ if $j \notin F_i$. We will present some results in this paper that give upper bounds on the size of \mathcal{F} under various conditions. Below is a list of related results by others.

²⁰⁰⁰ Mathematics Subject Classification:05D05

Key words and Phrases: Extremal set theory, intersection families, polynomial method

Theorem 1. (Ray-Chaudhuri and Wilson [1]) If $K = \{k\}$, and L is any set of nonnegative integers with $k > \max l_j$, then $|\mathcal{F}| \leq {n \choose s}$.

Theorem 2. (Alon, Babai, and Suzuki [2]) If K and L are two sets of nonnegative integers with $k_i > s - r$, for every i, then $|\mathcal{F}| \leq \binom{n}{s} + \binom{n}{s-1} + \cdots + \binom{n}{s-r+1}$.

Theorem 3. (Snevily [3]) If K and L are any sets such that min $k_i > \max l_j$, then $|\mathcal{F}| \leq \binom{n-1}{s} + \binom{n-1}{s-1} + \cdots + \binom{n-1}{0}$.

Theorem 4. (Snevily [7]) Let K and L be sets of nonnegative integers such that min $k_i > \max l_j$. Then, $|\mathcal{F}| \leq {\binom{n-1}{s}} + {\binom{n-1}{s-1}} + \cdots + {\binom{n-1}{s-2r+1}}$.

Conjecture 5. (Snevily [4]) For any K and L with min $k_i > \max l_j$, $|\mathcal{F}| \leq {n \choose s}$.

In the same paper in which he stated the above conjecture, Snevily mentions that it seems hard to prove the above bound and states the following weaker conjecture.

Conjecture 6. (Snevily [4]) For any K and L with min $k_i > \max l_j$, $|\mathcal{F}| \leq \binom{n-1}{s} + \binom{n-1}{s-1} + \cdots + \binom{n-1}{s-r}$.

Hwang and Sheikh [8] proved the bound of Conjecture 6 when K is a consecutive set. The second theorem we prove is a special case of Conjecture 6 with the extra condition that $\bigcap_{i=1}^{m} F_i \neq \emptyset$. These two theorems are stated hereunder.

Theorem 7. (Hwang and Sheikh [8])Let $K = \{k_1, k_2, ..., k_r\}$ where $k_i = k_1 + i - 1$, $k_1 > s - r$, and $L = \{l_1, l_2, ..., l_s\}$. Let $\mathcal{F} = \{F_1, F_2, ..., F_m\}$ be such that $|F_i| \in K$ for each $i, |F_i| \notin L$, and $|F_i \cap F_j| \in L$ for any $i \neq j$. Then $|\mathcal{F}| \leq \binom{n-1}{s} + \binom{n-1}{s-1} + \cdots + \binom{n-1}{s-r}$.

Theorem 8. (Hwang and Sheikh [8]) Let $K = \{k_1, k_2, ..., k_r\}$, $L = \{l_1, l_2, ..., l_s\}$, and $\mathcal{F} = \{F_1, F_2, ..., F_m\}$ be such that $|F_i| \in K$ for each $i, |F_i \cap F_j| \in L$ for any $i \neq j$, and $k_i > s - r$. If $\bigcap_{i=1}^m F_i \neq \emptyset$, then $|\mathcal{F}| \leq \binom{n-1}{s} + \binom{n-1}{s-1} + \cdots + \binom{n-1}{s-r}$.

Theorem 9. (Alon, Babai and Suzuki [2]) Let K and L be subsets of $\{0, 1, ..., p-1\}$ such that $K \cap L = \emptyset$, where p is a prime and $\mathcal{F} = \{F_1, F_2, ..., F_m\}$ be a family of subsets of [n] such that $|F_i| \pmod{p} \in K$ for all $F_i \in \mathcal{F}$ and $|F_i \cap F_j| \pmod{p} \in L$ for $i \neq j$. If $r(s-r+1) \leq p-1$, and $n \geq s + \max k_i$, then $|\mathcal{F}| \leq {n \choose s} + {n \choose s-1} + \cdots + {n \choose s-r+1}$.

Conjecture 10. (Alon, Babai and Suzuki [2]) Let K and L be subsets of $\{0, 1, ..., p-1\}$ such that $K \cap L = \emptyset$, where p is a prime and $\mathcal{F} = \{F_1, F_2, ..., F_m\}$ be a family of subsets of [n] such that $|F_i| \pmod{p} \in K$ for all $F_i \in \mathcal{F}$ and $|F_i \cap F_j| \pmod{p} \in L$ for $i \neq j$. If $n \geq s + \max k_i$, then $|\mathcal{F}| \leq {n \choose s} + {n \choose s-1} + \cdots + {n \choose s-r+1}$.

In [2], Alon, Babai, and Suzuki proved their conjectured bound under the extra conditions that $r(s-r+1) \leq p-1$ and $n \geq s + \max k_i$. Qian and Ray-Chaudhuri ([5]) proved that if n > 2s - r instead of $n \geq s + \max k_i$, then the above bound holds.

We prove a Alon-Babai-Suzuki's conjecture in non-modular version.

Theorem 11. Let $K = \{k_1, k_2, ..., k_r\}$, $L = \{l_1, l_2, ..., l_s\}$ be two sets of nonnegative integers and $\mathcal{F} = \{F_1, F_2, ..., F_m\}$ be such that $|F_i| \in K$ for each $i, |F_i \cap F_j| \in L$ for any $i \neq j$, and $n \geq s + \max k_i$. then $|\mathcal{F}| \leq {n \choose s} + {n \choose s-1} + \cdots + {n \choose s-r+1}$.

2 Proof of Theorem

Proof of Theorem 11 For each $F_i \in \mathcal{F}$, consider the polynomial

$$f_i(x) = \prod_{\substack{j \\ l_j < |F_i|}} (v_i \cdot x - (k_i - l_j)),$$

where v_i is the characteristic vector of F_i and v_i^* is the characteristic vector of $F_i^* = F_i - \{1\}$. Let $\overline{v_i}$ be the characteristic vector of F_i^c , and $\overline{v_i}^*$ be the characteristic vector of $(F_i^c)^*$.

We order $\{F_i\}$ by size of F_i , that is, $|F_j| \leq |F_k|$ if j < k. We substitute the characteristic vector $\overline{v_i}$ of F_i^c by order of size of F_i . Clearly, $f_i(\overline{v_i}) \neq 0$ for $1 \leq i \leq r$ and $f_i(\overline{v_j}) = 0$ for $1 \leq j < i \leq r$. Assume

$$\sum_{i} \alpha_i f_i(x) = 0.$$

We prove that $\{f_i(x)\}$ is linearly independent. Assume that this is false. Let i_0 be the smallest index such that $\alpha_{i_0} \neq 0$. We substitute $\overline{v_{i_0}}$ into the above equation. Then we get $\alpha_{i_0}f_{i_0}(\overline{v_{i_0}}) = 0$. We get a contradiction. So $\{f_i(x)\}$ is linearly independent. Let $\mathcal{E} = \{E_1, ..., E_e\}$ be the family of subsets of [n] with size at most s - r, which is ordered by size, that is, $|E_i| \leq |E_j|$ if i < j, where $e = \sum_{i=0}^{s-r} {n \choose i}$. Let u_i denote the characteristic vector of E_i . We define the multilinear polynomial g_i in n variables for each E_i :

$$g_i(x) = \prod_{l=1}^{r} \left(\sum_{t=1}^{n} x_t - (n - k_l) \right) \prod_{j \in E_i} x_j.$$

We prove that $\{g_i(x)\}$ is linearly independent. Assume that

$$\sum_{i} \beta_i g_i(x) = 0.$$

Choose the smallest size of E_i . Let u_i be the characteristic vector of E_i . We substitute u_i into the above equation. We know that $g_i(u_i) \neq 0$ and $g_j(u_i) = 0$ for any i < j. Since $n \geq s + \max k_i$, we get $\beta_i = 0$. If we follow the same process, then the family $\{g_i(x)\}$ is

linearly independent. Next, we prove that $\{f_i(x), g_i(x)\}$ is linearly independent. Now, assume that

$$\sum_{i} \alpha_i f_i(x) + \sum_{i} \beta_i g_i(x) = 0.$$

Let F_1 be the smallest size of F_i . We substitute the characteristic vector $\overline{v_1}$ of F_1^c into the above equation. Since $|F_i^c| = n - k_l$, $g_i(\overline{v_1}) = 0$ for all *i*. We only get $\alpha_1 f_1(\overline{v_1}) = 0$. So $\alpha_1 = 0$. By the same way, choose the smallest size from $\{F_i\}$ after deleting F_1 . We do the same process. We also can get $\alpha_2 = 0$. By the same process, we prove that all $\alpha_i = 0$. We prove that $\{f_i(x), g_i(x)\}$ is linearly independent.

Any polynomial in the set $\{f_i(x), g_i(x)\}$ can be represented by a linear combination of multilinear monomials of degree $\leq s$. The space of such multilinear polynomials has dimension $\sum_{i=0}^{s} \binom{n}{i}$. We found $|\mathcal{F}| + \sum_{i=0}^{s-r} \binom{n}{i}$ linearly independent polynomials with degree at most s. So $|\mathcal{F}| + \sum_{i=0}^{s-r} \binom{n}{i} \leq \sum_{i=0}^{s} \binom{n}{i}$. Thus $|\mathcal{F}| \leq \binom{n}{s} + \binom{n}{s-1} + \cdots + \binom{n}{s-r+1}$.

Acknowledgement

We thank Zoltán Füredi for encouragement to write this paper. The present research has been conducted by the research grant of the Kwangwoon University in 2009.

References

- D. K. Ray-Chaudhuri and R. M. Wilson, On t-designs, Osaka. J. Math, 12 (1975), 737-744.
- [2] N. Alon, L. Babai, and H. Suzuki, Multilinear polynomials and Frankl-Ray-Chaudhuri-Wilson type intersection theorems, J. Comb. Theory Ser.A, 58 (1991), 165-180.
- [3] H. S. Snevily, On generalizations of the deBruijn-Erdős Theorem, J. Combin. Theory Ser. A, 68 (1994), 232-238.
- [4] H. S. Snevily, A generalization of the Ray Chaudhuri-Wilson Theorem, J. Combin. Designs, 3 (1995), 349-352.
- [5] Jin Qian and D. K. Ray-Chaudhuri, On mod-p Alon-Babai-Suzuki inequality, J. Algebraic Combin., 12 (2000), 85-93.
- [6] Jin Qian and D. K. Ray-Chaudhuri, Extremal case of Frankl-Ray-Chaudhuri-Wilson inequality, Special issue on design combinatorics: in honor of S. S. Shrikhande, J. Statist. Plann. Inference, 95 (2001), 293-306.
- [7] H. S. Snevily, A sharp bound for the number of sets that pairwise intersect at k positive values, *Combinatorica*, **23** (2003), 521-533.

- [8] K-W. Hwang and N. Sheikh, Intersection families and Snevily's conjecture, European Journal of Combinatorics, 28 (2007), 843-847.
- [9] W. Cao, K-W. Hwang, and D. West, Improved Bounds on Families Under k-wise Set-Intersection Constraints, *Graphs and Combinatorics*, **23** (2007), 381-386.
- [10] Z. Furedi, K-W. Hwang, and P. Weichsel, A proof and generalizations of the Erdos-Ko-Rado theorem using the method of linearly independent polynomials, *Topics in Discrete Mathematics*, **26** (2006), 215-224.