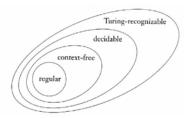
Outline

- Language Hierarchy
- Definition of Turing Machine
- TM Variants and Equivalence
- Decidability
- Reducibility

Outline

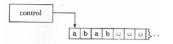
- Language Hierarchy
- Definition of Turing Machine
- TM Variants and Equivalence
- Decidability
- Reducibility

Language Hierarchy



- •Regular: finite memory
- •CFG/PDA: infinite memory but in stack space
- •TM: infinite and unrestricted memory
 - -TM Decidable/Recursive
 - -TM Recognizable/Recursively Enumerable

Semantics of TM



- Not a real machine, but a model of computation
- Components:
 - 1-way infinite tape: unlimited memory
 - · Store input, output, and intermediate results
 - · Infinite cells
 - · Each cell has a symbol from a finite alphabet
 - Tape head:
 - Point to one cell
 - · Read or write a symbol to that cell
 - · move left or right

States of a TM

- Initial state:
 - Head on leftmost cell
 - input on the tape
 - Blank everywhere else
- · Accept state
- Reject state
- Loop
- Accept or reject immediately

Formal Definition

- A **Turing machine** is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, where Q, Σ , and Γ are all finite sets and
- 1. Q is the set of states,
- 2. Σ is the input alphabet, where the *blank* symbol $_{\sqcup} \not \in \Sigma$,
- 3. Γ is the tape alphabet, where $_{\sqcup} \in \Gamma$ and $\Sigma \subseteq \Gamma$,
- 4. $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$ is the transition function,
- 5. $q_0 \in Q$ is the start state,
- 6. $q_{\mathsf{accept}} \in Q$ is the accept state, and
- 7. $q_{\text{reject}} \in Q$ is the reject state.

Example of transition function:

$$\delta(q, a) = (p, b, L)$$

$$\delta(q, a) = (p, b, R)$$

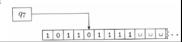
An Example

 $B = \{w \# w | w \in \{0, 1\}^*\}, \text{ and } B = L(M_1)$

• The tape changing:

Configuration

- A configuration of TM:
 - Current state
 - Symbols on tape
 - Head of location
- A formal specification of a configuration:
 - uqv, where
 - $_$ u,v are strings on $\Gamma,$ and uv is the current content on taps q is current state
 - head is in the first symbol of v.
 - ex: 1011 q₇ 01111



Configuration

· For two configurations:

```
uaq_ibv and uq_jacv, where a,b,c\in\Gamma, and u,v\in\Gamma^* uaq_ibv yields uq_jacv if \delta(q_i,b)=(q_j,c,L) uaq_ibv yields uacq_jv if \delta(q_i,b)=(q_j,c,R)
```

- Two special cases:
 - the leftmost cell
 - $q_i b v$ yields $q_j c v$ for $\delta(q_i, b) = (q_j, c, L)$
 - $q_i b v$ yields $c q_j v$ for $\delta(q_i, b) = (q_j, c, R)$
 - on the cell with blank symbol
 - uaq_i is equivalent to $uaq_i \sqcup$

Languages

- · Turing-recognizable Languages:
 - For a $L \subseteq \Gamma^*$, exists a M such that M recognizes L
 - "Recognize" means accept, reject, or loop
- · Turing-decidable languages:
 - For a $L \subseteq \Gamma^*$, exists a M such that M decides L
 - "Decide" means halting: either accept or reject
- Turing-decidable ⊂ Turing-recognizable
 - Halting Problem is Turing-recognizable, but not decidable.
- Not all languages are Turing-recognizable
 - There are some languages cannot be recognized by a TM.
 - · Complement of Halting problem is Turing-unrecognizable

Configuration

- Initial configuration with input $w: q_0 w$
- Accepting configuration: uq_{accept}v
- Rejecting configuration: $uq_{reject}v$
- $uq_{accept}v$ and $uq_{reject}v$ do not yield any other configurations
 - Immediate effect of accepting/rejecting
 - Halting configurations
- For a TM M, a string w∈ L(M) if there is a sequence of configurations C₁, C₂, ... C_k such that:
 - $C_I = q_0 w$
 - $\ C_i \ \text{yields} \ C_{i+I} \ \text{for} \quad 1 \leq i \leq k$
 - $-C_{\mathbf{k}} = uq_{\mathit{accept}} \mathbf{v}, \ u, v \in \Gamma^*$

An example

 $A = L(M_2)$, where $A = \{0^{2^n} | n \ge 0\}$

• Semantical description:

```
For an input string w:

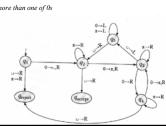
{ sweep left to the right along the tape, crossing off every other 0 if tape contains single 0 { return accepted;} elseif tape contains odd number and more than one of 0s { return (rejected);}
```

}

Formal description: $M_2 = \{Q, \Sigma, \Gamma, \delta, q_1, q_{accept}, q_{reject}\}, \text{ where}$

else go back to leftmost cell;

- $Q = \{q_1, q_2, q_3, q_4, q_5, q_{accept}, q_{reject}\}$
- Σ = {0}
- $\Gamma = \{0, x, \sqcup\}$
- δ: state transition diagram



Outline

- Language Hierarchy
- Definition of Turing Machine
- TM Variants and Equivalence
- Decidability
- Reducibility

Simple variant

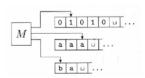
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$
- $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, RR, LL\}$
- They are equivalent in recognizing language:
 - They can be simulated by original the TM
 - The difference is not significant

TM Variants

- Multitape TM
- Nondeterministic TM
- Enumerators
- Equivalence: All have same power
 - Recognize the same class of languages
 - Can be simulated by an ordinary TM

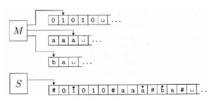
Multitape TM

- A multitape TM is identical to ordinary TM except:
 - -k tapes, where $k \ge 1$
 - Each tap has its own head
 - ${}^- \, \delta : Q \times \Gamma^k \to Q \times \Gamma^k \times \{L,R,S\}^k$
 - $\delta(q_i, a_1, a_2, \dots, a_k) = (q_j, b_1, b_2, \dots, b_k, L, R, \dots, R)$



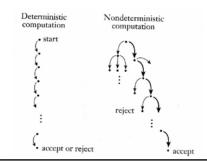
Multitape TM

- Theorem: each multitape TM has an equivalent single tape TM
 - Put # in a single tape for demarcation of original k tapes.
 - Each movement of M is simulated by a series movement of S on each segment.
 - For a right-move on the rightmost cell of th tape in M, S write blank symbol in (i+1)th #, and right-shifts all symbols after that one cell.



NTM

• A computation single path and multi-path in a tree:

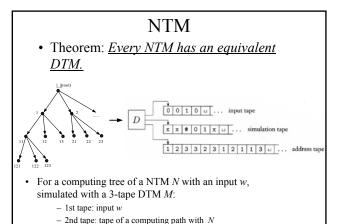


Nondeterministic TM

- A nondeterministic TM is identical to an ordinary TM except:
 - $\delta: Q \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{L, R\})$
 - At any point the head has several possibilities to read/write/move.
- In deterministic TM, a computation is a single path with sequence of configurations.
- In nondeterministic TM, a computation is a tree or a directed acyclic graph.
 - A NTM accepts an input string if there exists a path leading to an accept state.
 - If all paths lead to reject state, then this input is rejected.

Nodeterminism

- Is nondeterministic model always equivalent to a deterministic model?
 - Yes, for FA
 - No, for PDA
 - Some CFL cannot be recognized by any DPDA.
 - Yes, for TM!



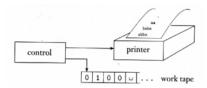
- 3rd tape: node address (finite)

Enumerator

- Theorem: A language is Turing-recognizable iff some enumerator enumerates it.
 - For a language, if E enumerates it, then construct a TM M works as:
 - Run E. Every time that E outputs a string, compare it with input w.
 - If w appears in the output of E, accept.
 - For a language recognized by a TM M, construct E such that:
 - Run M for i steps on each input, s1, s2, ..., si.
 - If any computations accept, print out the corresponding sj.
 - · Repeat the above two steps with all possible inputs
- An enumerator can be regarded as a 2-tape TM.
 - Write accepted list on the 2nd tape.

Enumerator

- Semantically, an enumerator is a TM with an attached printer.
- Every time the TM wants to add a string to its output list, it sends the string to the printer.
- The language enumerated by an enumerator E is the collection of all the strings that E eventually prints out.



Other Variants

- Write-twice TM
 - Each cell on tape can only be written twice
- · Write-once TM
 - Each cell on tape can only be written once
- TM with doubly infinite tape
 - Two-way infinite tape
- Universal TM
 - A TM that takes input of description of another TM.

Thesis

- Church-Turing Thesis:
 - Any algorithm can be expressed as a TM
 - Formally defines an algorithm:

Intuitive notion equals Turing machine of algorithms algorithms

- Extended Church-Turing Thesis:
 - Any polynomial-time algorithm can be expressed as a TM that operates in polynomial time.
 - A polynomial-time algorithm: number of element operations is a polynomial function of input length.
 - A polynomial-time TM: number of state transition is a polynomial function of input length.

Outline

- Language Hierarchy
- Definition of Turing Machine
- TM Variants and Equivalence
- Decidability
- Reducibility

Describing TM

- · Formal description
 - specifying Turing machine's states, transition function, and so on.
- Implementation description
 - using natural language to describe the way that the Turing machine moves its head and the way that it stores data on its tape.
- · High-level description
 - using natural language describe an algorithm, ignoring the implementation model.

Solvability

- Solvable:
 - an algorithm to solve it,
 - a TM decides it.
- Unsolvable:
 - not algorithm to solve it
 - no TM can decide it.

Decidable Language

 $A_{\mathsf{DFA}} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts } w \}$

- Acceptance problem:
 - Whether a particular DFA B accepts a given input string w.
- · Membership problem:
 - Another way to say: whether <B,w> is a member of A_{DEA}.
- Theorem: A_{DFA} is a decidable language.

M = "On input $\langle B, w \rangle$, where B is a DFA and w is a string:

- 1. Simulate B on input w.
- If the simulation ends in an accept state, accept; otherwise, reject."

Decidable Language

 $A_{\mathsf{REX}} = \{\langle R, w \rangle \mid R \text{ is a regular expression that generates } w\}$

• Theorem: <u>A_{REX} is a decidable language</u>.

P= "On input $\langle R,w\rangle,$ where R is a regular expression and w is a string:

- 1. Convert regular expression ${\it R}$ to an equivalent DFA ${\it A}.$
- 2. Run TM M for deciding A_{DFA} on input $\langle A, w \rangle$.
- 3. If M accepts, accept; otherwise, reject."

Decidable Language

 $A_{\mathsf{NFA}} = \{ \langle B, w \rangle \mid B \text{ is an NFA that accepts } w \}.$

• Theorem: <u>A_{NFA} is a decidable language</u>.

N = "On input $\langle B, w \rangle$, where B is an NFA and w is a string:

- 1. Convert NFA ${\cal B}$ to an equivalent DFA ${\cal C}.$
- 2. Run TM M for deciding $A_{\mbox{\scriptsize DFA}}$ (as a "procedure") on input $\langle C,w\rangle.$
- 3. If M accepts, accept; otherwise, reject."

Decidable Language

 $E_{\mathsf{DFA}} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \}$

- Emptiness test problem:
 - Whether the language of a particular DFA is empty.
- Theorem: E_{DFA} is a decidable language.

T= "On input $\langle A \rangle$, where A is a DFA:

- 1. Mark the start state of A.
- 2. Repeat Step 3 until no new states get marked.
- Mark any state that has a transition coming into it from any state that is already marked.
- 4. If no accept state is marked, accept; otherwise, reject."

Decidable Language

 $EQ_{\mathsf{DFA}} = \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$

- Equivalence problem:
 - Test whether two DFAs recognize the same language.
- Theorem: <u>EQ_{DFA} is a decidable language</u>.

F = "On input $\langle A, B \rangle$, where A and B are DFAs:

- 1. Construct DFA $C = (A \cap \overline{B}) \cup (\overline{A} \cap B)$.
- 2. Run TM T for deciding E_{DFA} on input $\langle C \rangle$.
- 3. If T accepts, accept; otherwise, reject."

Halting Problem

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$

Theorem: $\underline{A_{TM}}$ is \underline{Turing} -recognizable.

U = "On input $\langle M, w \rangle$, where M is a TM and w is a string:

- 1. Simulate M on input w.
- If M ever enters its accept state, accept; if M ever enters its reject state, reject."
 - U is an example of universal TM.
 - U keeps looping if M neither accepts or rejects.

Other Problems

- A_{CFG} is decidable.
- E_{CFG} is decidable.
- *EQ_{CFG}* is undecidable.
 - CFG is not closed in intersection and complementation.
- A_{TM} is undecidable.
 - Halting problem
- E_{TM} is undecidable.
- EQ_{TM} is undecidable.

Halting Problem

- Theorem: $\underline{A_{TM}}$ is undecidable.
 - Can be proved by recursive theorem.

Suppose H is a decider for A_{TM} :

$$H(\langle M, w \rangle) = \begin{cases} \textit{accept} & \text{if } M \text{ accepts } w \\ \textit{reject} & \text{if } M \text{ does not accept } w \end{cases}$$

D = "On input $\langle M \rangle$, where M is a TM:

- 1. Run H on input $\langle M, \langle M \rangle \rangle$.
- 2. If H accepts, reject and if H rejects, accept."

$$D(\langle\,\mathsf{M}\rangle) = \left\{ \begin{array}{ll} \mathit{accept} & \mathsf{if} \;\; \mathsf{M} \;\; \mathsf{does} \;\; \mathsf{not} \;\; \mathsf{accept} \;\; \langle\,\mathsf{M}\,\rangle \\ \mathit{reject} & \mathsf{if} \;\; \mathsf{M} \;\; \mathsf{accepts} \;\; \langle\,\mathsf{M}\,\rangle \end{array} \right.$$

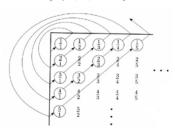
$$D(\langle D \rangle) = \left\{ \begin{array}{l} \mathit{accept} & \text{if } D \text{ does not accept } \langle D \rangle \\ \mathit{reject} & \text{if } D \text{ accepts } \langle D \rangle \end{array} \right.$$

Unrecognizable

- Theorem: *There are languages that cannot recognized by any TM*.
 - The set of TMs are countable
 - Q, Σ, and Γ are all finite sets
 - · Number of transition functions is countable.
 - The set of languages is uncountable.
 - $w \in \Gamma^*$
 - $L \subseteq \Gamma^*$
 - $L \in \mathcal{P}(\Gamma^*)$, $\mathcal{P}(\Gamma^*)$ is uncountable
 - Diagonalization method to prove this

Countable

• Set of position rational numbers is countable: $\{m/n, m, n \in \mathcal{N}\}$



Countable and Uncountable

- Two infinite sets *A* and *B* are the <u>same size</u> if there is a <u>correspondence</u> from A to B.
 - A correspondence is a <u>one-to-one</u> and <u>onto</u> function: $f: A \rightarrow B$
 - one-to-one: $f(a) \neq f(b)$ whenever $a \neq b$
 - Onto: $\forall b \in B, \exists a \in A, f(a) = b$
- A set is <u>countable</u> if either it is finite or it has the same size as N = {1,2,3...}; otherwise it is <u>uncountable</u>.

Uncountable

• Set of real numbers *R* is uncountable:

Assume that a correspondence f existed between $\mathcal N$ and $\mathcal R$.

$$\begin{array}{c|cccc} n & f(n) \\ \hline 1 & 3.14159 \cdots \\ 2 & 55.55555 \cdots \\ 3 & 0.12345 \cdots \\ 4 & 0.500\underline{0}0 \cdots \\ \vdots & \vdots \end{array}$$

We can find an x, 0 < x < 1, so that the i-th digit following the decimal point of x is different from that of f(i); for example, $x = 0.4641\cdots$ is a possible choice.

Uncountable

- The set of all languages over an alphabet is uncountable.
 - Think that a real number is a string over alphabet of {., 0,1,2,3,4,5,6,7,8,9}
 - Similar diagonalization way to prove with general alphabet

 $\overline{A_{\mathsf{TM}}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ does not accept } w \}$

- Theorem: $\overline{A_{TM}}$ is not Turing-recognizable
 - If $\overline{A_{TM}}$ is Turing-recognizable, and A_{TM} is Turing-recognizable, then A_{TM} must be decidable.—contradiction!

• Theorem: <u>A language is decidable iff both</u> <u>it and its complement language are</u> <u>Turing-recognizable.</u>

- If A is decided by M_1 , then:
 - M_2 ="on input w:
 - 1. Run M_i on w.
 - 2. If M_I rejects, accept; if M_I accepts, reject. "
 - M_2 decides \overline{A}
- If A and \overline{A} are Turing-recognizable:

Let M_1 be a recognizer for A and M_2 be a recognizer for $\overline{A}.$

M = "On input w:

- 1. Run both M_1 and M_2 on input w in parallel. (M takes turns simulating one step of each machine until one of them halts.)
- 2. If M_1 accepts, accept and if M_2 accepts, reject."

Outline

- Language Hierarchy
- Definition of Turing Machine
- TM Variants and Equivalence
- Decidability
- Reducibility

Reducibility

- Semantics

- Mapping Reducibility