Chapter 4, Part 2

The Halting Problem

The Halting Problem

Define $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a Turing machine and accepts } w \}.$ **Theorem.** A_{TM} is not decidable.

The Halting Problem

Define $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a Turing machine and accepts } w \}.$

Theorem. $A_{\rm TM}$ is not decidable.

From this theorem we obtain:

Corollary. $\overline{A_{\rm TM}}$ is not Turing-recognizable, and thus, not decidable.

The Halting Problem

Define $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a Turing machine and accepts } w \}.$

Theorem. $A_{\rm TM}$ is not decidable.

From this theorem we obtain:

Corollary. $\overline{A_{\rm TM}}$ is not Turing-recognizable, and thus, not decidable.

For this corollary we need the following fact.

Fact. A language *L* is decidable if and only if both *L* and \overline{L} are Turing-recognizable.

Proof of Corollary $A_{\rm TM}$ is Turing-recognizable and is notdecidable.So, $\overline{A_{\rm TM}}$ is Turing-recognizableCorollary

Proof of Fact

Proof of Fact $[\Rightarrow]$ Let L be decidable and let M be a Turing machine that decides L. By swapping q_{accept} and q_{reject} of M we get a Turing machine M' that decides \overline{L} . So both L and \overline{L} are Turing-decidable, and thus, Turing-recognizable.

Proof of Fact (cont'd)

[\Leftarrow] Let L and \overline{L} be recognized by TMs M_1 and M_2 , respectively. Define a two-tape machine M that, on input x, does the following:

- 1. M copies x onto Tape 2.
- 2. M repeats the following until either M_1 or M_2 accepts:
 - M simulates one step of M_1 on Tape 1 then one step of M_2 on Tape 2.
- 3. M accepts x if either M_1 accepts x or M_2 rejects x; M rejects x if either M_2 accepts x or M_1 rejects x.

Then M decides L because for every x, at least one of the two machines halts on input x.

Diagonalization

A set S is **countable** if either it is finite or it has the same size as \mathcal{N} ; i.e., there is a **one-to-one, onto correspondence** between S and \mathcal{N} (or there is a **bijection** from S to \mathcal{N}).

Simple Facts About the Countable

Let \mathcal{Q} be the set of all positive rational numbers and let \mathcal{R} be the set of all positive real numbers.

Fact. Q is countable while \mathcal{R} is not.

Proving the Fact

Proof Each member of Q is expressed as a fraction $\frac{m}{n}$ such that $m, n \in \mathcal{N}$ and gcd(m, n) = 1.

So we have only to come up with a bijection from \mathcal{N} to the set $\{\frac{m}{n} \mid m, n \geq 1 \& \gcd(m, n) = 1\}.$

Q is countable

We will visit all the grid points in the first quadrant of the xy-plane.

For $p = 1, 2, 3, \ldots$, visit the points (x, y) on the line x + y = p

$$(1, p-1), (2, p-2), \dots, (p-1, 1)$$

and collect only those points at which x and y are relatively prime to each other.

Q is countable

The numbers show the visiting order. Number 5 is (2,2) and thus is skipped.

\mathcal{R} is not countable

Assume, by way of contradiction, that \mathcal{R} is countable. Then the real numbers can be enumerated as r_1, r_2, \ldots

Define x to be the number between 0 and 1 defined as follows:

(*) For each $i \in \mathcal{N}$, the *i*th digit of x after the decimal point is that of r_i plus 1 (modulo 10).

For example, if $r_1 = 3.14159, r_2 = 2.23606, r_3 = 1.73205, \ldots$, then x = .243...,

$\underline{\mathcal{R}}$ is not countable

Assume, by way of contradiction, that \mathcal{R} is countable. Then the real numbers can be enumerated as r_1, r_2, \ldots

Define x to be the number between 0 and 1 defined as follows:

(*) For each $i \in \mathcal{N}$, the *i*th digit of x after the decimal point is that of r_i plus 1 (modulo 10).

For example, if $r_1 = 3.14159, r_2 = 2.23606, r_3 = 1.73205, \ldots$, then x = .243...,

This x is real. By assumption there must exist a k such that r_k is x. However, by definition, the k-th digit of r_k is different from that of x, a contradiction.

Thus, \mathcal{R} is not countable.

An Immediate Application of Diagonalization

Corollary. There is a language that is not Turing-recognizable.

An Immediate Application of Diagonalization

Corollary. There is a language that is not Turing-recognizable.

Proof Consider all Turing machines whose input alphabet is $\{0\}$.

Since each Turing machine can be encoded as a word of finite length, this set of Turing machines is countable.

Let M_1, M_2, \ldots be the enumeration of all Turing machines in this set.

An Immediate Application of Diagonalization

Corollary. There is a language that is not Turing-recognizable.

Proof Consider all Turing machines whose input alphabet is $\{0\}$.

Since each Turing machine can be encoded as a word of finite length, this set of Turing machines is countable.

Let M_1, M_2, \ldots be the enumeration of all Turing machines in this set.

Define $L = \{0^i \mid M_i \text{ on input } 0^i \text{ does not accept } \}.$

An Immediate Application of Diagonalization (cont'd)

Define $L = \{0^i \mid M_i \text{ on input } 0^i \text{ does not accept } \}.$

There is no machine M_k that recognizes L. Why?

If there were such a k, then we have by definition of L

 $0^k \in L \Leftrightarrow M_k$ does not accept 0^k .

However, the latter condition, by the definition of k, is equivalent to $0^k \notin L(M_k)$. Since $L(M_k) = L$, it is equivalent to $0^k \notin L$. Thus, we have

$$0^k \in L \Leftrightarrow 0^k \not\in L$$
,

a contradction.

Proof of Theorem ($A_{\rm TM}$ is not decidable)

Assume that $A_{\rm TM}$ is decidable. Let T be a Turing machine that decides $A_{\rm TM}$. Define D to be a machine that, on input w,

- 1. Check whether w is a legal encoding of some Turing machine, say M. If not, immediately reject w.
- 2. Simulate T on $\langle M, \langle M \rangle \rangle$.
- 3. If T accepts, then reject; otherwise, accept.

Since T decides $A_{\rm TM}$ by assumption, M always halts; so does D. For every Turing machine M,

 $\begin{array}{l} D \text{ accepts } \langle M \rangle \Leftrightarrow M \text{ does not accept } \langle M \rangle \\ \text{With } M = D, \text{ we have} \\ D \text{ accepts } \langle D \rangle \Leftrightarrow D \text{ does not accept } \langle D \rangle. \\ \text{This is a contradiction.} \end{array}$