Chapter 4, Part 2

The Halting Problem

The Halting Problem

Define $A_{\mathrm{TM}}=\{\langle M, w\rangle \mid M$ is a Turing machine and accepts $w\}$.
Theorem. A_{TM} is not decidable.

The Halting Problem

Define $A_{\mathrm{TM}}=\{\langle M, w\rangle \mid M$ is a Turing machine and accepts $w\}$.
Theorem. A_{TM} is not decidable.
From this theorem we obtain:
Corollary. $\overline{A_{\mathrm{TM}}}$ is not Turing-recognizable, and thus, not decidable.

The Halting Problem

Define $A_{\mathrm{TM}}=\{\langle M, w\rangle \mid M$ is a Turing machine and accepts $w\}$.
Theorem. A_{TM} is not decidable.
From this theorem we obtain:
Corollary. $\overline{A_{\mathrm{TM}}}$ is not Turing-recognizable, and thus, not decidable.

For this corollary we need the following fact.
Fact. A language L is decidable if and only if both L and \bar{L} are Turing-recognizable.

Proof of Corollary A_{TM} is Turing-recognizable and is not decidable. So, $\overline{A_{\mathrm{TM}}}$ is Turing-recognizable
-Corollary

Proof of Fact

Proof of Fact $\quad[\Rightarrow]$ Let L be decidable and let M be a Turing machine that decides L. By swapping $q_{\text {accept }}$ and $q_{\text {reject }}$ of M we get a Turing machine M^{\prime} that decides \bar{L}. So both L and \bar{L} are Turing-decidable, and thus, Turing-recognizable.

Proof of Fact (cont'd)

[\Leftarrow] Let L and \bar{L} be recognized by $\mathrm{TMs} M_{1}$ and M_{2}, respectively. Define a two-tape machine M that, on input x, does the following:

1. M copies x onto Tape 2.
2. M repeats the following until either M_{1} or M_{2} accepts:

- M simulates one step of M_{1} on Tape 1 then one step of M_{2} on Tape 2.

3. M accepts x if either M_{1} accepts x or M_{2} rejects $x ; M$ rejects x if either M_{2} accepts x or M_{1} rejects x.

Then M decides L because for every x, at least one of of the two machines halts on input x.

- Fact

Diagonalization

A set S is countable if either it is finite or it has the same size as \mathcal{N}; i.e., there is a one-to-one, onto correspondence between S and \mathcal{N} (or there is a bijection from S to \mathcal{N}).

Simple Facts About the Countable

Let \mathcal{Q} be the set of all positive rational numbers and let \mathcal{R} be the set of all positive real numbers.

Fact. \mathcal{Q} is countable while \mathcal{R} is not.

Proving the Fact

Proof Each member of \mathcal{Q} is expressed as a fraction $\frac{m}{n}$ such that $m, n \in \mathcal{N}$ and $\operatorname{gcd}(m, n)=1$.

So we have only to come up with a bijection from \mathcal{N} to the set $\left\{\left.\frac{m}{n} \right\rvert\, m, n \geq 1 \& \operatorname{gcd}(m, n)=1\right\}$.

\mathcal{Q} is countable

We will visit all the grid points in the first quadrant of the $x y$-plane.
For $p=1,2,3, \ldots$, visit the points (x, y) on the line $x+y=p$

$$
(1, p-1),(2, p-2), \ldots,(p-1,1)
$$

and collect only those points at which x and y are relatively prime to each other.

\mathcal{Q} is countable

The numbers show the visiting order. Number 5 is $(2,2)$ and thus is skipped.

\mathcal{R} is not countable

Assume, by way of contradiction, that \mathcal{R} is countable. Then the real numbers can be enumerated as r_{1}, r_{2}, \ldots.

Define x to be the number between 0 and 1 defined as follows: (*) For each $i \in \mathcal{N}$, the i th digit of x after the decimal point is that of r_{i} plus 1 (modulo 10).
For example, if $r_{1}=3 . \underline{14159}, r_{2}=2.2 \underline{3} 606, r_{3}=1.73 \underline{2} 05, \ldots$, then $x=.243 \ldots$,

\mathcal{R} is not countable

Assume, by way of contradiction, that \mathcal{R} is countable. Then the real numbers can be enumerated as r_{1}, r_{2}, \ldots.

Define x to be the number between 0 and 1 defined as follows: (*) For each $i \in \mathcal{N}$, the i th digit of x after the decimal point is that of r_{i} plus 1 (modulo 10).
For example, if $r_{1}=3 . \underline{1} 4159, r_{2}=2.2 \underline{3} 606, r_{3}=1.73 \underline{2} 05, \ldots$, then $x=.243 \ldots$.

This x is real. By assumption there must exist a k such that r_{k} is x. However, by definition, the k-th digit of r_{k} is different from that of x, a contradiction.

Thus, \mathcal{R} is not countable.

An Immediate Application of Diagonalization

Corollary. There is a language that is not Turingrecognizable.

An Immediate Application of Diagonalization

Corollary. There is a language that is not Turingrecognizable.

Proof Consider all Turing machines whose input alphabet is $\{0\}$.
Since each Turing machine can be encoded as a word of finite length, this set of Turing machines is countable.

Let M_{1}, M_{2}, \ldots be the enumeration of all Turing machines in this set.

An Immediate Application of Diagonalization

Corollary. There is a language that is not Turingrecognizable.

Proof Consider all Turing machines whose input alphabet is $\{0\}$.
Since each Turing machine can be encoded as a word of finite length, this set of Turing machines is countable.

Let M_{1}, M_{2}, \ldots be the enumeration of all Turing machines in this set.

Define $L=\left\{0^{i} \mid M_{i}\right.$ on input 0^{i} does not accept $\}$.

An Immediate Application of Diagonalization (cont'd)

Define $L=\left\{0^{i} \mid M_{i}\right.$ on input 0^{i} does not accept $\}$.
There is no machine M_{k} that recognizes L. Why?
If there were such a k, then we have by definition of L

$$
0^{k} \in L \Leftrightarrow M_{k} \text { does not accept } 0^{k} .
$$

However, the latter condition, by the definition of k, is equivalent to $0^{k} \notin L\left(M_{k}\right)$. Since $L\left(M_{k}\right)=L$, it is equivalent to $0^{k} \notin L$. Thus, we have

$$
0^{k} \in L \Leftrightarrow 0^{k} \notin L,
$$

a contradction.

Proof of Theorem (A_{TM} is not decidable)

Assume that A_{TM} is decidable. Let T be a Turing machine that decides A_{TM}. Define D to be a machine that, on input w,

1. Check whether w is a legal encoding of some Turing machine, say M. If not, immediately reject w.
2. Simulate T on $\langle M,\langle M\rangle\rangle$.
3. If T accepts, then reject; otherwise, accept.

Since T decides $A_{\text {TM }}$ by assumption, M always halts; so does D. For every Turing machine M,
D accepts $\langle M\rangle \Leftrightarrow M$ does not accept $\langle M\rangle$
With $M=D$, we have
D accepts $\langle D\rangle \Leftrightarrow D$ does not accept $\langle D\rangle$.
This is a contradiction.

